TLC showed that there was some reduction product, but a great deal of total decomposition was obvious. Workup as above gave a small quantity of reduction product which was not sufficient for characterization. Reduction of \(\text{CH}_2\text{CD}_2\text{C(O)CC(O)}\text{CO}_2\text{H} \) (1.0 mmol) with 1.5 mL of \(\text{CF}_3\text{C(O)}\text{H} \) in 50 mL of benzene at reflux (4-h reaction time), on the other hand, was successful. Workup as above gave 0.11 g (23%) \(n\)-butylidylnonacarbonyl which NMR showed to be a mixture of the various combinations of \(\alpha \)- and \(\beta \)-deuterated compounds.

Reduction of (Isopropenylmethylene)tricobalt Nonacarbonyl with Deuteriomalononitrile. The usual apparatus was charged with 0.48 g (1.0 mmol) of \(\text{CH}_2\text{CMeCC(O)}\text{CO}_2\text{H} \), 2 mL of \(\text{CF}_3\text{C(O)}\text{H} \), and 50 mL of benzene. After this solution had been stirred and heated at reflux under nitrogen for 4 h, removal of volatiles and column chromatography of the residue gave 0.25 g (52%) of \(\text{Acetic Acid} \). The standard apparatus used in the \(\text{CF}_3\text{C(O)}\text{H} \) reductions was not to be used in the above products but appeared to represent a combination of the various products were identified by comparison of their IR spectra with those of authentic samples.

Starting ketone had \(\text{C}_2\text{H}_5\text{CH(OH)CCO}_3\text{(CO)}_9 \), mp 136-138 °C (lit.: mp 137-138 °C). Both workup gave 0.03 g (6%) of \(n\)-\(\text{C}_3\text{H}_7\text{CCO}_3\text{(CO)}_9 \) and 0.29 g (58%) of \(\text{Me}_2\text{CHCCO}_3\text{(CO)}_9 \), mp 151-153 °C (lit.: mp 150-153 °C). Both compounds were identified by comparison of their IR spectra with those of authentic samples.

Reduction of (Propynylmethylene)tricobalt Nonacarbonyl with Acetic Acid. The standard apparatus was used in the \(\text{CF}_3\text{C(O)}\text{H} \) reductions was charged with 0.5 g (1.0 mmol) of \(\text{CH}_2\text{CH(OC)}\text{CO}_2\text{H} \), 1.5 mL of \(\text{CF}_3\text{C(O)}\text{H} \), and 50 mL of benzene. After this solution had been stirred and heated at reflux under nitrogen for 2 h, TLC showed that all of the starting ketone had been consumed and that two products, one of higher and the other of lower molecular weight, were present. The usual workup gave 0.03 g (6%) of \(n\)-\(\text{C}_2\text{H}_5\text{C(OH)CCO}_3\text{(CO)}_9 \) and 0.29 g (58%) of \(\text{C}_2\text{H}_4\text{CH(OC)}\text{CO}_2\text{H} \), mp 136-138 °C (lit.: mp 137-138 °C). Both products were identified by comparison of their IR spectra with those of authentic samples.

Metalloporphyrins with Unusual Geometries. 1. Mono-, Di-, Triatom-Bridged Porphyrin Dimers

Kazuyuki Tatsumi and Roald Hoffmann*

Contribution from the Department of Chemistry, Cornell University, Ithaca, New York 14853.

Received September 24, 1980

Abstract: The electronic structure of mono-, di-, and triatom-bridged metalloporphyrin dimers is examined to show how orbital symmetries and electron counts determine their geometries and electronic properties. An orbital diagram constructed for \((\text{N}_{4}\text{M})\text{X}-(\text{MN})_2\), where \(\text{N}_4 \) is a model porphyrin and \(\text{X} \) denotes an \(\text{O}, \text{N}, \) or \(\text{C} \) atom, accounts for the bending preference and magnetic behavior of the \(\text{X} = \text{O}, \text{N} \) species. The analysis of the diagram leads us to predict that the carbido-bridged complexes should be stable diamagnetic molecules having a linear \(\text{M}--\text{C}--\text{M} \) spine. The Walsh diagram for bending of the \(\text{M}--\text{O}--\text{O} \) bonds in \((\text{N}_4\text{M})--\text{O}--\text{O}-(\text{MN})_2\) shows that geometrical preferences of \(\text{M} = \text{Fe} \) and \(\text{M} = \text{Co} \) compounds are very much alike. Although the normal trans bent \(\text{M}--\text{O}--\text{M} \) structure is calculated to be most stable, a cis bent alternative is also a possibility, if the steric constraints allow it. A side-on structure, which may be accessible for low d-electron counts, is at relatively high energy for \(\text{M} = \text{d}^4 \). The simultaneous 1,2 migration of two metalloporphyrin fragments on structures of an \(\text{M}_{2}\text{O}_{3}^{+} \) unit in \((\text{O}=\text{Mo-porphyrin})--\text{O}-(\text{porphyrin}=\text{Mo-porphyrin}) \) (and \(\text{Nb-porphyrin})--\text{O}-(\text{Nb-porphyrin}) \) can be explained by optimal \(\text{M}--\text{O} \) interactions.

Metalloporphyrins in protein systems perform an important class of biochemical functions in nature. Hemoglobin, myoglobin, chlorophyll, and cytochromes are all well-known examples, the chemistry of which relates principally to redox reactions and the transport, storage, and activation of molecular oxygen. Over the years a great biochemical effort has brought us substantial understanding of the structure-function relationship in these natural metalloporphyrins.

Inorganic chemists have also been very active in this field as well. They have made a large number of synthetic models for naturally occurring metalloporphyrins in their effort to determine the factors which govern the biological function of the natural porphyrins.
and to mimic their biological efficiency in vitro. Although nature has outdone chemists in creating compounds suited for specific tasks, “model porphyrins” have unfolded a rich and beautiful chemistry of their own. The simplest and most frequently encountered class of synthetic porphyrins is the monomeric single-porphyrin type where, in many cases, a central metal takes up an additional one or two donor ligands to complete its coordination sphere (see 1). Various synthetic porphyrin derivatives and their dioxygen adducts are extensively studied examples of this type, which frequently incorporate an ingeniously modified porphyrin ring. It is no accident that much theoretical effort has been directed to this particular area.

Besides this class, the prosperity of synthetic porphyrin chemistry has provided metalloporphyrins with more unusual geometries. Some of these are mono-, di-, or trinuclear bridged porphyrin dimers (M porphyrin) X, X = O, N, or O, or O, skewed out-of-plane metalloporphyrins (ML2 porphyrin), M = Fe, Rh, Re, and carbene-inserted metalloporphyrins Ni(N2-TPP)-CHR etc. What causes the varied geometries, which often accompany unique electronic and magnetic properties? In this paper, we present our theoretical study of these geometrically unusual metalloporphyrins, in which we will focus on the mono-, di-, or trinuclear bridged porphyrin dimers. Our purpose is to show how symmetry-imposed restrictions rationalize their unusual geometries and to determine what kind of metal or what number of d electrons can create these geometries. The theoretical analyses are based on the extended Hückel method, with parameters specified in the Appendix.

Reduced Porphyrin and Its Model (NH4)2. The first theoretical analysis of these geometrically unusual metalloporphyrins dates back to the pioneering work by Longuet-Higgins, Rector, and Platt, which was followed by Kobayashi’s P-type calculations and an extensive and elegant series of studies by the Gouterman group. More recently, ab initio and MSW-Xα methods have been applied to this area. Thus a great deal is known about the electronic structure of porphyrins and metalloporphyrins. The porphyrin dianion 2 exists as two pyrrole-type rings joined by four methine bridges to give a planar N4 macrocycle. The highly conjugated system is the origin of the strong color of
porphyrin compounds and plays an important role in their oxidation-reduction properties. The porphyrin dianion also provides a vacant site at its center, ideally prepared for metal incorporation. The tetradentate ligand completes well a square-planar, square-pyramidal, or octahedral coordination environment, and it contains sufficient space to accommodate most any metal and has built into it some conformational flexibility to accommodate metal ions of larger radius.

The essence of bonding between a central metal atom and this tetradentate ligand is to be found in the following two types of primary interactions—σ coordination of nitrogen lone pairs directed toward the center of the ring and π interaction of metal pπ and/or dπ with nitrogen pπ orbitals.10 The symmetry aspects of these interactions are familiar—the appropriate symmetry-adapted linear combinations of ligand orbitals are shown schematically in 3. The central metal atom bonds to the tetradentate ligand surrounding it through interactions of dπ-π*, dπ and s-π*, pπ and pπ→pπ pairs. Each interaction may be spread out over several orbitals in the porphyrin system—this is just a summary of the symmetry types. In the σ system the porphyrin is clearly a donor to the metal. What about the π system? Clearly the porphyrin has the appropriate orbitals to act both as a π donor and as an acceptor. But the calculations indicate that it is on the donor side—for instance the N 2pπ orbital is occupied by a net 1.61 electrons in a free porphyrin dianion.

The metalloporphyrin complexes of interest to us are quite large molecules. One basic porphyrin dianion unit has 108 valence orbitals, and we wanted to treat molecules containing two such units, two metal atoms, and for good measure several other ligands as well—often in a situation of low symmetry. Reasons of computational economy thus forced us to examine a simplification of the porphyrin ring. Our guide in this simplification was the realization that our interest resides in ground-state properties of the metalloporphyrins and not in their (important) excited states. For this specific purpose, the large conjugated system of the porphyrin may not be crucial. If a model porphyrin contains the orbital set delineated in 3, perhaps it is sufficient to describe the bonding in even larger, composite metalloporphyrins. Considering thus the minimal requirements for a model porphyrin, we simplified the ring progressively from 2 to 4 and 5 and finally to 6,

\[
\text{(NH}_3\text{)}_4^+ 4 \text{ was still too large for our purposes, and 5 failed to retain the } D_{4h} \text{ symmetry which so facilitated the theoretical analysis. In the tetraamido model 6, four nitrogen of the model ligand provide properly a set of lone-pair orbitals and four doubly occupied pπ orbitals shown above in 3. In the } D_{4h} \text{ arrangement of } (\text{NH}_3)_4^+ \text{ the } \text{H-N-H angle of } 106.4^\circ \text{ and a distance between the center C\text{t} and N atom (2.027 Å) were taken from the corresponding C-N-C angle and Ct-N distance in Fe(TPP)→Fe(TPP).}\]

The metalloporphyrins which we examine in our work contain M(porphyrin) "fragments" where a metal M is either in the middle of the porphyrin plane or out of that plane. Exploratory calculations were then carried out for in- and out-of-phase geometries of the fragment Fe11(porphyrin) and its model Fe11(N4)2- to see how our simplest model preserves the orbital pattern of Fe11 (porphyrin). The valence orbitals are shown in Figure 1. For both Fe11(porphyrin) and Fe11(N4)2- in a D4h square-planar geometry, the four lower d orbitals, xy (b2u), z2 (a1g), and a degenerate pairxz, yz (e1u), are located very close to each other in energy. No wonder that the order of d orbitals is very sensitive to a small change in geometrical parameters of the porphyrin and to a calculational method chosen.5,8,9 In our calculations xy > z2 > xz, yz for Fe11(porphyrin) and xz, yz > xy > z2 for Fe11(N4)2-.

A small out-of-plane displacement of Fe(II) affects these orbitals, but not significantly, for both Fe11(porphyrin) and Fe11(N4)2- retain the lower d block with the order xz, yz > z2 > xy. Other orbitals of Fe11(porphyrin) in Figure 1 consist primarily of Cpπ orbitals of a porphyrin and are nearly innocent of metal–porphyrin interaction. Perhaps the major weakness of the model is the absence in it of any acceptor characteristic of the porphyrin ring. Thus the model lacks the counterpart of the two higher lying eg sets of the porphyrin. Being aware of this shortcoming we returned to the full porphyrin for checks in our subsequent work, whenever we perceived that porphyrin-acceptor properties were of possible importance.

Single-Atom-Bridged Porphyrin Dimers.12 Two metalloporphyrins may be linked at the metal through a single atom X (see 7). Such μ-oxo-porphyrin dimers have often been reported,

10. Minor interactions between a central metal and the porphyrin ring arise from combinations of N pseudo-σ orbitals and metal orbitals: επ\((N)\rightarrow p_{π*}(N), b_{1g}\rightarrow d_{π*}\). The a2g combination of N pseudo-σ finds no metal orbitals with which to interact.
Metalloporphyrins with Unusual Geometries

Figure 2. The building up of the orbitals of \(N_4Fe-N-FeN_4 \). From left to right: the orbitals of the pyramidal \(N_4Fe \) in which \(Fe \) is displaced by 0.32 Å out of the \(N_4 \) plane, two such pyramidal \(N_4Fe \) units brought to 3.32 Å separation between the ions, the orbitals of the composite nitrido complex. The electron count shown is that appropriate to a low-spin \(Fe-N-Fe \) complex.

while X-ray diffraction analyses are available for \((Fe-TPP)O\)\(^{11}\) and \((O=Mo-TPP)O\)\(^{13}\). Also we have plenty of structural data for equivalent p-oxo dimers which contain Schiff bases\(^{14}\) or phthalocyanines (Pc) instead of porphyrin rings\(^{15}\). For \(X = N \) we have, so far, a single example\(^{16}\). While severely constrained by the steric bulk of the macrocyclic ligands, these bridged molecules nevertheless exhibit a range of bending angles at \(X \). The smallest angle, 139°, was observed for \((Fe-salen)O(py)\)\(^{17} \) (8a), the largest, linearity, being typified by \((py-Mn-Pc)O\)\(^{15} \) (8b) and \((Fe-TPP)N\) (8c).

Another interesting feature of these bridged dimers is the remarkable range of their magnetic properties. The bridging atom can support strong electronic interactions between the two metal sites so that chemical and physical interactions of the dimer may differ substantially from related monomers.

Figure 3. The valence orbitals of \(N_4Fe-X-FeN_4 \) for \(X = C, N, \) and O. The electron count shown is for a low-spin Fe-X-Fe configuration.

The construction of the molecular orbitals for \((Fe-N_4)X\) is illustrated by nitrido-bridged dimers (\(X = N \)) in Figure 2. The iron atom is displaced by 0.32 Å out of the \(N_4 \) plane, while the Fe-bridging \(N \) distance is taken as 1.661 Å. The symmetry is \(D_{4h} \) staggered \(N_4 \) units. These geometrical parameters are derived from the data of the X-ray diffraction analysis of \((Fe-TPP)N\)\(^{18}\).

The theoretical analysis follows familiar lines.\(^{18}\) The first column of Figure 2 shows the \(d \) orbital splitting of the pyramidalized \(Fe(N_4) \), in which a nest of four \(d \) orbitals is far below the high lying \(x^2-y^2 \) orbital. The pyramidal \(Fe(N_4) \) units are brought to 3.32 Å of each other in the second column. The direct through-space overlap of these orbitals is not great, leading to the small splitting. The orbitals are still easily recognized as in- and out-of-phase combinations of \(xy, x^2-y^2, z^2 \), and \(x^2, y^2, e_2 \). Now the interaction with the bridging atom \(N \) is introduced. \(N \) bears orbitals of \(a_1 (2s) \) and \(b_2 + e_1 (2p) \) symmetry. In the high \(D_{4h} \) symmetry the \(e_2 \) and \(d \) block combinations are left alone, and the \(a_1, b_2, \) and \(e_1 \) molecular orbitals mix to a varying degree with \(N \) orbitals (see 9).

These orbitals are destabilized according to the strength of the Fe-bridging atom antibonding interaction.

For a bridging \(N \), the four levels are very nearly degenerate in our calculations. Then the odd electron of \((Fe-TPP)N\) may sit in either of these levels. The other eight electrons in Figure 2 reside in four low-lying \(e_2 \) and \(e_3 \) orbitals which are well separated in energy from the four destabilized levels. We expect the ground state of \((Fe-TPP)N\) to be a low-spin doublet. The very
two metals can be achieved in three distinct ways. One can doubly oxidize an FeIII(Fe-TPP)\textsubscript{2}O\textsubscript{2}2+ through the way problem of the actual spin ground state of that system is not resolved. Or one can move to another metal or ligand set, as in (Mn-phthalocyanine)\textsubscript{2}O2+(py)\textsubscript{2}2+ (8b) or (RuCl\textsubscript{3}H\textsubscript{2}O2+2+ (10). But most interesting is retention of the iron group metal atom but formal oxidation of the bridge, i.e., (Fe-TPP)\textsubscript{2}C (11a) or some equivalent L\textsubscript{n}FeIVC-FeIVL\textsubscript{n} (11b,c).

Carbides in which a carbon atom is encapsulated by a metal polyhedron are now well-known. Simple carbon sandwiches have been occasionally proposed, but we know of no authentic example. Our suggestion of a stable, diamagnetic, carbon sandwich (Fe-TPP)\textsubscript{2}C might be considered outlandish, were it not for the fact that precisely this molecule has just been made. Mansuy and co-workers, quite independently of our theoretical work, have synthesized (Fe-TPP)\textsubscript{2}C by several routes as shown in eq 1-4. The molecule is diamagnetic and quite stable.

Two FeII+ compounds with four more electrons are thought to be antibonding orbitals a\textsubscript{1}, b\textsubscript{2}, or e\textsubscript{1} decreases in the order of X = O > N > C which, in turn, leads to an increasing order O < N < C of M-X net bonding interactions. If the ground electronic configurations are (e\textsubscript{2}e\textsubscript{4}e\textsubscript{1}e\textsubscript{0}b\textsubscript{2}b\textsubscript{1}) for X = O, (e\textsubscript{2}e\textsubscript{4}a\textsubscript{1}b\textsubscript{1}b\textsubscript{0}) for X = N, and (e\textsubscript{2}e\textsubscript{1}a\textsubscript{1}b\textsubscript{0}e\textsubscript{0}) for X = C, calculated Fe-X overlap populations are 0.44, 0.88, and 1.08, respectively. In the carbido-brided dimer the π overlap population between Fe (xz + yz) and C (x + y) orbitals amounts to 0.41, indicating the presence of strong Fe-C π bonding.

One may recall here also the recently synthesized μ-chloroiron(III)-(porphyrin)copper(II) complex [(Fe-porphyrin)-Cl(Cu(N)\textsubscript{4})\textsubscript{2}+ (12). The Fe(III)-Cl-Cu(II) spine has four more

\[\text{Fe(TPP)} + \text{Cl} \rightarrow \text{Fe(TPP)}\text{Cl} \]
\[\text{Fe(TPP)} + (\text{CH}_3)_2\text{SiCl}_3 \rightarrow (\text{Fe(TPP)})\text{Cl} \]
\[\text{Fe(TPP)} + \text{CH}_2\text{Cl}_2 + \text{n-BuLi} \rightarrow \text{Fe(TPP)}\text{Cl} \]
\[\text{Fe(TPP)} + \text{Fe(TPP)}(\text{CBr}_3) \rightarrow (\text{Fe(TPP)})_2\text{C} \]

(24) (a) Collins, J. B.; Schleyer, P. R. Inorg. Chem. 1977, 16, 152-155. Jennins, E. D.; Schleyer, P. R., private communication. (b) Minke, V. L.; Miyasaka, M. Z. Arhiv Khim. 1975, 15, 225-234. (c) There is an intriguing report, accompanied by a crystal structure, of Sc(TPP)(Re(CO)\textsubscript{3})\textsubscript{2} in which carbides are sandwiched between Re and Sn: Noda, I.; Kato, S.; Minuta, M.; Yatsuka, N.; Kasai, N. Angew. Chem. 1979, 91, 85-86. Our calculations on this structure do not lead to a satisfactory electronic configuration, and we are left to wonder if the carbide atom might be really O or CH\textsubscript{2}.
electrons than (Fe-TPP)$_2$O. The additional electrons should sit in M–Cl antibonding orbitals which would be similar to the e_1, b_3, and a_1 orbitals in (Fe-TPP)$_2$X. This will result in a substantial weakening of M–Cl bonds and explain the long Fe–Cl (2.55 Å) and Cu–Cl (2.41 Å) bond distances observed by X-ray diffraction analysis. The instability of a chlorine atom in the bridging position may be seen in the infrared spectrum, which shows a strengthening of the Fe–Cl bond at a lower temperature, indicating a shift of the Cl atom toward Fe.

We have studied the bending of (Fe–N$_4$)$_2$X (X = O, N, C), i.e., variation of the Fe–X–Fe angle θ. Potential energy curves are shown in Figure 4, where low-spin configurations are assumed for both X = O and N. The μ-oxo compound has a very soft surface with a tendency to bend. The Fe–O–Fe = 150° geometry, the most bent geometry we calculated, is preferred to the "linear" spine by less than 1 kcal/mol. A potential minimum will be found at an angle θ somewhere smaller than 150°. In the actual porphyrin dimers (Fe–TPP)$_2$O, the observed Fe–O–Fe angle is 174.5°. This reflects a limit to the amount of steric interaction that can occur between the two TPP rings. Our N_4 model porphyrin obviously lacks the steric bulk that real porphyrins have. With respect to the bending, our model might represent better μ-oxo-iron(III) Schiff-base dimers. The electronic structure of these is equivalent to (Fe–TPP)$_2$O, but they possess greater geometrical flexibility in their macrocycles. When the steric demands of the ligand sphere allow it, e.g., (Fe-salen)$_2$O, the Fe–O–Fe spine can bend up to 139°. Other isoelectronic systems, which exhibit notable M–O–M bending, include endo[(FeIII-HEDTA)$]_2$O, 6H$_2$O,28 (165°) and [(bpy)$_2$(NO$_2$)RuIII]$]_2$O(ClO$_4$)$_2$•2H$_2$O25 (157.2°).

Let us trace the factors responsible for these bending curves through a Walsh diagram, drawn schematically in 13. In the lowest and the highest portion of the diagram two δ-type orbital sets, e_2, remain at their initial energy. The position of the a_1 level is almost unchanged, while the b_2 is slightly destabilized. The important orbital energy changes occur in e_1 and e_3. In these, the components in the xz plane, which turn a_1's in the lowered C_2v symmetry, are affected by the bending motion. The $3a_2$ from e_1 favors bending, possibly due to (1) an increasing bonding interaction between Fe xz orbitals and/or (2) a hybridization of O 2s with 2p which may enfeeble the Fe–O antibonding character. The O 2s–2p hybridization may be expressed in terms of an e_1–a_1 MO mixing in the lower symmetry. The $2a_1$ from e_3, on the other hand, resists bending because of an increasing Fe–Fe antibonding interaction. Another factor opposing bending comes from "core" levels below the d block, where ligand–ligand steric repulsions are to be seen. The net balance of these opposing effects is that the stabilization of e_1 overcomes, ever so slightly, the latter two destabilizing factors.

The analysis of the Walsh diagram points out that the nonlinear geometry of the d^5–d^5 M–O–M framework is rather unique among μ-oxo dimers. If two or more electrons are removed from the Fe(III)–O–Fe(III), there will be no occupied valence orbital favoring a bent form. This should lead to a linear M–O–M framework. In fact the linear geometry has been observed for all μ-oxo dimers of d^{n}–d^{n} ($n < 5$) electron systems, e.g., [(Cr(N$_2$H$_5$)$_3$)$_2$O]Cl$_2$•H$_2$O ($d^3–d^3$),30 (py–Mn–Pc)$_2$O ($d^4–d^4$),15 (O=C–Mo–TPP)$_2$O ($d^2–d^2$),13 K$_2$(RuCl$_3$)$_2$O$^+$H$_2$O ($d^1–d^1$),10,22 K$_2$(RuCl$_3$)$_2$O$^+$H$_2$O ($d^3–d^3$),16 and Re$_2$O$_3$(dtr)$_2$ ($d^2–d^2$).11

Now return to Figure 4. The μ-nitrido model complex (Fe–N$_4$)$_2$N favors a linear Fe–N–Fe spine, in agreement with the observed (Fe–TPP)$_2$N structure. The Walsh diagram for bending the μ-nitrido model (see 14) is slightly different from that of the μ-oxo complex. The highest occupied level (HOMO) is now a_1. The a_1, in which an odd electron resides, favors bending, while the e_1 level shows no significant change in its orbital energy. The stabilization of the a_1 level should arise from N 2s–2p hybridization, in other words, from the a_1–e_1 molecular orbital mixing. Other orbitals behave in the same way as corresponding orbitals in μ-oxo compound do. Thus the origin of the geometrical contrast between μ-oxo- and μ-nitrido-iron complexes may be ascribed to the different number of electrons in the d block. Two electrons in e_1, of the μ-oxo complex (see 13) are responsible for its preference of a bent geometry. For μ-nitrido, on the other hand, only one electron in the a_1 level seeks a bent form but cannot compensate the opposing effects of both e_3 and the core levels, which prefer linearity.

It should be noted that the conclusions as to the linearity of the nitrido complex do not depend on the precise level ordering.

We have the odd electron in a_{1g}, but as we mentioned above there are four levels (a_1, e_1, b_2) close to each other, and it could well be that the details of porphyrin structure will so conspire as to put the odd electron into a level other than a_{1g} That is not likely to affect the Walsh diagram. Note that in that little subblock of levels one a' (3a') goes down in energy with bending, one goes up, and one stays put. This pattern is typical of orbitals interacting with some symmetry lowering distortion when they could not interact in the absence of that distortion. It is probable that such a pattern (one up, one down, one constant) will be obtained no matter what the level ordering.

When the odd electron is removed from the system, the singly oxidized μ-nitrato-porphyrin dimers must have a linear structure. Although there is no direct example of this type, an analogous compound of the same electron count may be $\text{Ru}_{2}\text{NC18(H2O)}_6$.

It does possess, indeed, a linear Ru-N-Ru bond (see 15).

In Figure 4, the μ-carbido complex exhibits clearly its preference for a linear Fe-C-Fe geometry. The explanation for the potential curve is straightforward, from Figure 3 and from the Walsh diagrams 13 and 14. There is no electron in the higher d block for $X = C$. No matter how these unoccupied d levels behave, all occupied orbital sets oppose the bending motion. We predict that the Fe-C-Fe bond in a μ-carbido-iron-porphyrin dimer should be linear.

Dioxygen-Bridged Porphyrin Dimers. Since the early discovery of the synthetic dioxygen complex [Co(NH3)6]^2+, a vast number of dioxygen-bridged cobalt dimers have been reported. The parent cobalt compounds are mostly classical inorganic types, e.g., Werner-type [Co(CN)6]^2- or Schiff-base type $\text{Co(salen)}(\text{py})$, while cobalt-porphyrin dimers are relatively rare. In naturally occurring systems, hemerythins and homocyanins are believed to have a M-O-O-M skeleton, where $\text{M} = \text{Fe}$ for the former and $\text{M} = \text{Cu}$ for the latter. Neither of them, however, contains a porphyrin moiety.

Dioxygen-bridged iron-porphyrin dimers have often been proposed as an intermediate in the autoxidation of ferrous porphyrins leading to the final oxidized product, the previously proposed as an intermediate in the autoxidation of ferrous porphyrins leading to the final oxidized product, the previously.

Figure 5. The building up of the orbitals of $\text{N}_4\text{Fe-O-O-FeN}_4$ with a linear Fe-O-O-Fe spine. There are ten orbitals of two FeN$_4$ units separated by 5.05 Å. Then the orbitals of the $(\text{FeN}_4)_2^-$ composite are allowed to interact with the O$_2$ orbitals at the right.

solutions of Fe(m-tolyl-TPP) results in the formation of the μ-dioxygen dimer (Fe(m-tolyl-TPP)$_2$O) which is characterized by ^1H NMR and magnetic data. Interestingly these solutions are stable indefinitely at $-80 \degree C$ (2 weeks) and for 1 h at $-30 \degree C$.

We show, in Figure 5, the orbital interaction diagram for a model iron-porphyrin dimer and dioxygen, where the Fe-O-O-Fe skeleton is linear. The two FeN$_4$ units are put in a staggered position, thus the D_4h molecular symmetry. Other geometrical parameters used are $\text{Cl-Fe} = 0.5 \AA$, $\text{Fe-O} = 1.80 \AA$, and $\text{O-O} = 1.45 \AA$. Two pyramidal Fe-N$_4$ units, which are separated by 5.05 Å from each other, provide a set of eight low-lying d orbitals in the first column of Figure 5. Of the orbitals of bridging O_2, $\pi(xz)$, $\pi^*(yz)$, and in- and out-of-phase combinations of lone-pair orbitals (a_1, b_2) are responsible for the interactions with the low-lying d block. Since the half or doubly occupied O$_2$ orbitals are all lower in energy than the d block, the insertion of O$_2$ in between two Fe-N$_4$ units pushes six d block orbitals up by different amounts, 0.4–1.6 eV. These destabilized d orbitals are antibonding combinations of O$_2$ and Fe d orbitals. Of these, a_1 and b_2 are most destabilized by an interaction with O$_2$ lone pairs. The O$_2$ π^*-d_d (xz, yz) interaction e_1 is slightly stronger than O$_2$ $\pi-d_d$ interaction e_1. The d orbitals of σ symmetry, e_2, remain unaffected by any of O$_2$ orbitals as in the case of single atom-bridged porphyrin dimers, (FeN$_4$)$_2$X.

Electron counting in dioxygen complexes is always complicated by the neutral dioxygen vs. peroxide dichotomy. The fragment electron counting is shown in Figure 5 as if the fragments were O$_2$ neutral and two d$_{5f}$ ML$_4$ fragments, Fe(NH$_3$)$_4^2$$. Electron transfer to the O$_2$ π^* is extensive, and one could just as well think of this system as peroxide and two d$_5$ centers, thus accounting for the ten electrons in the d block of the composite molecule. The electron count here is thus appropriate to a model for (TPP-Fe)$_2$O$_2$.

The actual complexes are not likely to be linear, and one might delay a discussion of their magnetic properties until the question of nonlinearity is treated in detail. However, it will turn out that bonding at oxygen does not have a major effect on the orbital energies, so that most fundamentals of the level scheme can be discussed on the basis of Figure 5. Specifically note the small HOMO-LUMO gap of ~0.6 eV. This may leave one with the uncertainty as to whether the d-d dimers under discussion might show a further unpairing of electrons, beyond the triplet...
Metalloporphyrins with Unusual Geometries

the electronic configuration assumed for calculation of total energies is a closed shell singlet.

state implied by the orbital filling of Figure 5. However, when the metal atoms take up bases (i.e., σ donors) at the axial position (see 16), the a1 and b2 levels will be pushed up significantly, leading to a certain intermediate (triplet) spin state. The magnetism of dioxygen-bridged dimers will be discussed below.

First let's consider the variation of e3 → 3a' orbital 17 which, in the linear form, consists of an antibonding combination of Fe dxy with O pσ. For the trans deformation, the oxygen pσ orbitals follow the bending motion of the adjacent dσ orbitals keeping dσ-O pσ antibonding interactions. Another way of saying this is that both O pσ orbitals rotate anticlockwise by about the same amount as the Fe-N4 units twist. This type of reorientation of O pσ orbitals does not relieve the dσ-O pσ antibonding character but decreases O2 - σ* antibonding interaction or increases O2 σ bonding interaction. This is the way the 3a' is stabilized by trans bending. Cis bending on the other hand, induces O pσ rotations in a different direction: one in a clockwise and the other in an anticlockwise manner. The Fe dσ-O pσ repulsive interaction is then removed, while O2 σ* character is added. These are opposing effects on the 3a' energy level. The balance results in a large stabilization of 3a'. In a similar way the origin of 2a' stabilization can be seen in 18.

Fe dσ-O pσ antibonding interactions in 2a' are decreased for trans and an O2 σ contribution is increased for cis. The analysis of these orbital trends is not simple. It can be put on a firmer footing with the aid of second-order perturbation-theoretic arguments—it is ultimately a mixing of oxygen lone pairs and π orbitals which is responsible for the reorientation of the π's in the lower symmetry—but we do not think it is worth presenting here.

As a consequence of the e1 and e2 level splitting, 3a'' becomes the LUMO of (Fe-N4)2O2 in a bent form, and the HOMO is 3a' at small θ or 2a' at large θ. Important features in Figure 6 are a very small HOMO–LUMO energy gap and a flat curve of the LUMO over the whole range of θ. The small HOMO–LUMO separation is probably behind the temperature dependence of the magnetic moment and also accounts in a qualitative way for the kinetic instability of the Fe(III)–O–O–Fe(III) skeleton. Conversely, M-O–O–M systems with two more electrons than (FeIII-N4)2O2 should be stable compounds, possibly diamagnetic. Addition of axial ligands on the metals (15) would assure diamagnetism, due to an increase in e1-b1, a1 or 3a''-(4a', 5a') energy separation. This is the property which we see in μ-peroxo cobalt(III) dimers. One-electron oxidation of the μ-peroxo cobalt(III) complexes readily yields μ-superoxo complexes, Co(II)-(O2)2-Co(III). The observed magnetic moment, μ = 1.6–2.02
μ_0, is again in the range of a low-spin state.38

A compound that we find enigmatic in its magnetic properties is a disulfur-bridged ruthenium dimer $\left[(\text{NH}_3)_2\text{RuSSRu-(NH}_3)_2\right]X_22\text{H}_2\text{O}, X = \text{Cl or Br}$. The compound is iso-

electronic with $(\text{Fe-porphyrin})_2\text{O}_2$. Thus the Ru-S-S-Ru spine, as expected, has a trans bent form, $\theta = 111.5^\circ$. Reasoning from Figure 6 one might have expected a triplet ground state. A calculation on the molecule in a geometry close to experimental gives a similar pattern to the O_2 case but with a slightly larger HOMO–LUMO gap of 0.53 eV. We hesitate to conclude from this gap whether the molecule should be high or low spin. The dimer, $X = \text{Br}$, exhibits a very low and temperature-independent magnetic moment, $\mu = 0.45 \mu_B$ over the range +25 to -100 °C. The magnetic moment for the related dimer $\text{trans-}[\text{Cl-(NH}_3)_2\text{RuSSRu(NH}_3)_2\text{Cl}]_2$ is 1.1 μ_B per dimer, whereas it is EPR silent in a frozen water matrix at liquid-nitrogen temperatures. We have no immediate explanation for this unusual magnetic behavior.

The flat 3a” (LUMO) curve implies that the stable conformations of Fe(III)–O–O–Fe(III) and of M–O–O–M with one or two more electrons should be very much alike. Thus our predictions in this section for the geometry of $\text{Fe-porphyrin}_2\text{O}_2$ may be checked by comparison with geometries of analogous Co compounds. The observed Co–O–O angle of both μ-peroxo and μ-superoxo compounds ranges from 110 to 123° which is close to the number 127° calculated for our model $(\text{Fe-N}_2)_2\text{O}_2$.

Changing metals from Fe to Co is not the only way to add two electrons to the Fe–O–O–Fe skeleton. Instead, one could change the formal oxidation state of the bridging ligand. We have found only one example for this, that of the μ-hydrazido-bis(heme carboxyl) derivatives.40 The complexes are highly stable in CDC13 solution and seems to be diamagnetic. The NMR and infrared spectra indicate nonlinear OC–Fe–N–N–Fe–CO bonding (see 20).

We have mentioned the possibility that a cis bent structure of $(\text{Fe-porphyrin})_2\text{O}_2$ may exist together with the normal trans bent structure, if steric constrains allow it. Are there any cis bent dioxygen-bridged cobalt dimers? So far no structural study is available showing a cis bent Co–O–Co bond, except cases in which an additional μ ligand is inserted in between two Co atoms (see 21).41 However, we have recently been informed by Chang42 that EPR studies on "cofacial" cobalt diporphyrins, $(\text{Co-porphyrin})_2\text{O}_2^+$, indicate the coexistence of cis and trans isomers in the same solution (22).

Now consider a twisting motion of two Fe–N4 units around the O–O axis. In our calculations the twisting starts at a trans Fe–O–O–Fe conformation with a fixed Fe–O–O angle, $\theta = 120^\circ$. Then the dihedral angle α of the two Fe–O bonds is varied from 180 to 90°. Remarkably no particular orbital responds to the twisting motion. All valence levels keep their energies nearly constant in the range $180^\circ \geq \alpha \geq 90^\circ$. As a consequence the total energy curves for any electronic configuration, whatever the electron count, are very flat until a steric interaction between two Fe–N4 units begins to affect the potential curve at around $\alpha = 110^\circ$. Therefore we think that the O–O twisting angle in any given molecule would be determined rather by steric interactions and/or crystal packing forces than by electronic factors. Experimentally the dihedral angle α of dimeric peroxy- and superoxocobalt complexes $(\text{Co(N}_2)_2\text{O}_2)^+$ lies in the range of 110–180°.33b,43 We do not find any electronic factor which rationalizes the variety of the dihedral angles observed. Interestingly, a μ-superoxo complex $K_2[\text{Co(CN)}_2\text{O}_2]$ has both planar ($\alpha = 180^\circ$) and slightly nonplanar ($\alpha = 166^\circ$) geometries in the same crystal, indicating that packing forces play an important role in determining the angle α.44

The μ-peroxo and μ-superoxo transition-metal dimers are not unique in showing a very flat potential surface for the twisting motion along the O–O bond. The simplest μ-peroxide, i.e., hydrogen peroxyde, also has a small energy barrier for going from a skewed form through trans to another skewed form, 23, where

\[
\begin{align*}
\text{O}_2 &\rightarrow \text{O}_2^- \\
\text{O}_2^- &\rightarrow \text{O}_2
\end{align*}
\]

the observed equilibrium dihedral angle is 111° or 249°.45 Experimentally the trans energy barrier is 1.1 kcal/mol, while calculated barriers range between 0.14 and 0.63 kcal/mol.46

In principle another possible geometry of O2-bridged porphyrin dimers is one in which the O2 is π^* bonded to both metals with the O–O bond axis lying perpendicular to the metal–metal axis (see 24). This type of structure was first proposed theoretically.47
Metalloporphyrins with Unusual Geometries

Figure 7. Top: Orbital correlation diagram for the deformation of $N_4Fe-O-O-FeN_4$ linking the two trans bent geometries, angle $Fe-O-O = 120^\circ$ and 90°, and the side-on structure. The O_2 fragment is staggered with respect to N atoms of both N_4 units. Dotted lines and d^7-d^7 labels indicate the filled-unfilled level gap for various d electron counts. Bottom: total energies for the d^{10} electron configuration of the three geometries.

and experimentally for $[(H_3N)_2Co]_2O_2^{5+}$. However a reinvestigation of X-ray analysis has shown that another structure is the correct one.

We have performed a calculation for the side-on structure 22 of $(Fe-N_4)_2O_2$ to see whether or not the geometry is likely for the iron-porphyrin dimers. In the calculation the distance between Fe and the center of O–O bond is assumed to be 1.80 Å, which is the same as the Fe–O distance of linear and bent $(Fe-N_4)_2O_2$. The two porphyrin rings are taken eclipsed to each other with O_2 being staggered with respect to the porphyrins. Other geometrical parameters are unchanged.

The right side of Figure 7 shows the valence orbital levels for this side-on structure of $(Fe-N_4)_2O_2$. Note that coordination axes have been changed, and now the z axis lies perpendicular to the FeO_2 plane. The lowest two and the highest two levels comprise levels of δ symmetry, $x^2 - y^2$ and xz orbitals corresponding to e_2 sets of linear $(Fe-N_4)_2O_2$ in Figure 5. Among others, the out-of-phase combination of xy, b_{1g}, is strongly destabilized by an antibonding interaction with $O_2\pi^*$. The low-lying two vacant levels $2a_g$ and $2b_g$ consist of y^2. Of the three highest occupied levels b_{1g} and b_{2g} are derived from yz, and b_{3g} from in-phase combination of xy. Some of these interactions will be familiar.

to the reader acquainted with our general analysis of alternative coordination modes for diatomic molecules. At the left side of Figure 7 we plot the valence levels of trans bent (Fe–N₄)₂O₂, θ = 120°. The levels at the middle are for θ = 90°. For a higher molecular symmetry, C₆v, to be maintained for the two geometries, two porphyrins are eclipsed to each other and are staggered with respect to O₂. The bottom of Figure 7 gives energy sums or core levels which correspond to energies of the d₆–d₆ system. The trans bent structure with θ = 120° is close to the most stable geometry of (Fe–N₄)₂O₂. The minor change in configuration of the porphyrins from staggered to eclipsed does not affect the total energy and the orbital energy levels of the trans form, θ = 120°. When we compare the total energy of the trans-bent structure of (Fe–N₄)₂O₂, d₆–d₆, with that of the trans bent θ = 120° form, the former is 1.1 eV higher than the latter. The relative instability of the side-on form, in our calculations, derives from two factors: (1) the d₆–d₆ energy which must reflect the increased repulsive interactions between O₂ and the N atoms in porphyrins and (2) destabilization of the b₁u and b₃g d levels.

Two-electron and four-electron reductions of the system, which are models for d₆–d₆ (Co–N₄)₂O₂ and d₇–d₇ (Ni–N₄)₂O₂, respectively, do not change the geometrical preference. The side-on structure is competitive with an end-on bonded alternative only for low d-electron counts, d₇–d₇. In the d₆–d₆ case there would be a level crossing between the two extreme geometries, which raises the interesting possibility of the coexistence of both isomers with a barrier to their interconversion. We will return to a molecule related to the d₆–d₆ case at the end of this section.

There are some interesting things to be learned about the relative stability or instability of side-on bonded structures from a comparison of our (M–N₄)₂O₂ with H₂O₂ and Li₂O₂. The “rhombic” structure of H₂O₂ is much less stable than the “equilateral trapezoid”. Extended Hückel calculations give an energy difference of 4.4 eV.46 The controlling factor in this preference is that the O–H bonding orbital of α symmetry in the trapezoid O₂ moves up strongly in energy at the rhombic form, becoming the O₂ π* level (see 25).50 On the other hand, the vacant Li p orbital stabilizes the b₂g in the rhombic form of Li₂O₂ (26). Thus the rhombic Li₂O₂ is 3.2 eV more stable than the trapezoidal one.

There is a similar stabilization of the b₂g symmetry level in the side-on structure of (Fe–N₄)₂O₂, where the Fe 3dₓᵧ orbitals are responsible for a bonding interaction with O₂ π*. The b₂g molecular orbital level (see 27) is the bonding counterpart of the b₁g level in Figure 7, and its contribution enters the d₆–d₆ potential energy. Although the presence of such a bonding interaction between the d₆–d₆ and O₂ π* seems to ease the instability of the side-on form, the resulting stabilization is insufficient to make this structure more stable than the trans bent geometry. Incidentally, such a stabilization has been implicated by Salem and his collaborators in a proposed mechanism of coenzyme-B₁₂ catalyzed reactions.

One can also consider the possibility of simultaneous 1,2 migration of two model porphyrin fragments on O₂, as illustrated in 28. Bond-switching organic reactions of this type have been called “dyotropic” reactions.53 Their feasibility in the ethane system has been evaluated theoretically earlier.50 Coenzyme-B₁₂-catalyzed reactions may involve such a simultaneous double migration.52 The correlation diagram required to analyze reaction 28 is already in hand in Figure 7. First there is an orbital crossing between the occupied 2α and the unoccupied 1b for the d₅–d₅ (Fe–N₄)₂O₂ going from the trans bent to the side-on structure. Also the d₆–d₆, which corresponds to (Co–N₄)₂O₂ has a level crossing between the 2α and the unoccupied 3b₂. Second, the “reactant” 2bα occupied level tends to correlate with the 2b₂(β₃) of the side-on form, while the “reactant” 3b₂ takes on the b₃g(β₃) character. Although these levels, of course, avoid a crossing, the “reactant” 2bα moves up strongly at the initial stage of the migration process. As a result the migration process of (Fe–N₄)₂O₂ meets an energy barrier before it reaches the side-on structure. Thus the simultaneous 1,2 migrations of the two metal porphyrins over O₂ are symmetry forbidden and will require an even higher activation energy than the energy differences between the trans bent and the side-on structures. The calculated energy barriers are 1.8, 2.5, and 1.7 eV for the d₅–d₅, d₆–d₆, and d₇–d₇ configurations, respectively.

If the reader is skeptical about the advisability of any consideration of such seemingly implausible structures as a d₅–π, doubly side-on bonded dioxygen, he might take a look at the crystal structure of 29, one product of the interaction of aluminum alkyls with dicyclopentadienylzirconium dihalides.53a The structure is...

Footnotes:

(49) Assumed geometries for the “rhombic” are O–O = 1.45 Å and H–H = 1.90 Å and for the “equilateral trapezoid” O–O = 1.45 Å, O–H = 0.95 Å, and H–O–O angle = 120°.
(50) The reader is referred to a related analysis of the stability of diborane type geometries for substituted ethanes. Hoffmann, R.; Williams, J. E.; J. Am. Chem. Soc. 1973, 95, 3095-3102; Angew. Chem. Intern. Ed. 1976, 15, 559-572. On the other hand, the vacant Li p orbital stabilizes the b₂g in the rhombic form of Li₂O₂ (26). Thus the rhombic Li₂O₂ is 3.2 eV more stable than the trapezoidal one.51

References:

very close to the side-on bonded extreme. Now the MLₚ fragment is very different and so is the central group that is being bridged. It is ethylene, isoelectronic with O₂. To stay with our peroxide electron-counting convention, we might consider the central group as CH₂CH?-, in which case we have a dⁿ-dⁿ electron count. This is one of the better chances for side-on bonding for peroxide.

Just as striking as 29 is the NMR study of racemization in (C₅₂ZrCl)₅ (RHCO).³⁵⁶

Alternative Structures of (M-Porphyrin)O₂. The porphyrin dimers of (M-porphyrin)₂O₃ stoichiometry show two remarkably different molecular structures. One contains a linear O-M-O-M-O group (30), e.g., (Mo-TPP)O₂.³⁵³ A totally different geometry is found in the structure of (Nb-TPP)₂O₃,³⁵⁴,³⁵⁵ (31), in which two Nb-TPP units are linked at the Nb center through three μ-oxo ligands. Another geometrical contrast between these two compounds is that the Mo atom sits almost in the plane whereas the Nb moves out of the plane, toward the bridging atoms, by 1.0 Å.

An obvious difference between the electronic structure of (Mo-TPP)₂O₃ and (Nb-TPP)₂O₃ is the number of d electrons. Let us count each oxide as O²⁻. Then each Mo atom in the complex has one d electron while the Nb complex has none. Is this d electron count important in determining the alternative structures? The answer is yes.

It is known that M-0 π interactions are crucial in the structure of oxo, μ-oxo, μ-superoxo, and μ-peroxo transition-metal complexes. The most stable geometry is chosen so as to maximize the M-O π bonding and/or to minimize the M-O π antibonding interaction. For d⁶ complexes only the former factor, the M d⁻-O p, π interaction, is important because M d⁻-O p, π antibonding levels are all unoccupied.

The geometry of d⁶-d⁶ (Nb-TPP)₂O₃ (31) may be rationalized in terms of maximum utilization of vacant dₓ orbitals. In the linear form 30 only two acceptor dₓ orbitals, xz and yz, of each metal atom are available for π bonding with donor pₓ and pᵧ orbitals of O²⁻. The geometry 31, on the other hand, allows vacant xy (or x² - y²) and z² to partly contribute to the π interaction, in addition to xz and yz.

Johnson and Scheidt³⁵⁷ in their structural study on (Nb-TPP)₂O₃ found that the Nb-O distances are not equal. Each Nb atom forms three distinct Nb-O bonds: one short, 1.756 Å; one long, 2.359 Å; one of intermediate length, 1.950 Å. This is drawn schematically in 32. Interestingly the angle between the two shorter Nb-O bonds of each Nb, 84.3°, is close to 90°, while the other O-Nb-O angles are smaller, ranging from 69.4 to 75.9°.

In general M d⁻-O p, π interactions are optimal when the O atoms are at 90° as shown in 33.

Unfortuantly it is difficult to extract pure dₓ-pᵧ interactions from the molecular orbitals of these complexes because of the low symmetry of (Nb-TPP)₂O₃. Instead we address this problem in the d⁶ compounds, MoO₂(TPP)³⁶ (34) and MoO₃(dien)³⁷ (35), which might be structurally analogous to (Nb-TPP)₂O₃ in the sense that oxygen atoms occupy cis coordination sites. The cis disposition of oxygen atoms is not a unique feature of the above two Mo compounds but in fact the prevailing trend in Mo(VI), V(V), and W(VI) d⁶ complexes.³⁸ This geometrical preference has been explained in terms of maximization of M-0 π interactions.³⁹

For d⁻-d⁻ (Mo-TPP)₂O₃ the above argument is reversed. The orbital energy of the lowest d level, the one which accepts the last two electrons, proves to be important in this case. In order to compare the energies of the lowest d level for geometries 30 and 31, we have performed calculations on the model (Nb-N₄)₂O₃.

For the linear O=Nb-0-Nb=O structure, each Nb atom is placed 0.1 Å out of the model porphyrin plane toward the terminal O. The Nb=O and Nb-O bond distances are 1.7 and 1.9 Å, respectively. The two Nb₄ units are staggered, thus the molecule has D₄d symmetry. The structure of 31 consists of three planes, two model porphyrins, and O₃, which are parallel to and are separated by 1.3 Å from each other. The Nb atoms move out of plane by 1.0 Å. The O₃ forms an equilateral triangle, whose sides are 2.5 Å. The conformation is drawn in 36. The upper

Figure 36

Nₓ rotates anticlockwise by 22.5° from a staggered position with respect to O₁ and the lower Nₓ rotates clockwise by the same angle. Thus two Nₓ units are staggered.

The lowest d level is of e₂ symmetry for the linear O=NB-Nₓ₂O. It is a combination of xy of the upper Nb-Nₓ and x² - y² of the lower one. In spite of the lowered symmetry, the lowest two d orbital combinations of (Nb-Nₓ) Oₓ- (Nb-Nₓ) retain e₂ character. Figure 8 plots the relative position in energy of the lowest d levels. For a comparison the e₁ level of a (Nb-Nₓ)₂ fragment is also given for each geometry.

The difference in the e₁ energy position between the two (Nb-Nₓ)₂ fragments at the right and the left ends of Figure 8 arises from a different degree of Nb out-of-plane displacement. As shown in Figure 1, a larger displacement of a central metal

(56) Ledon, H.; Bonnet, M. J. J. Chem. Soc., Chem. Commun. 1979, 702-704. The X-ray crystal analysis of (Mo-TPP)O₂ has been completed:

accompanies a greater stabilization of the d_{xy} whose orbital lobes point between the N atoms of a porphyrin. The absence of a Nb d-\sigma pb antibonding interaction in the e_2 level of the linear form leaves the e_2 untouched and provides a comfortable seat for the last two electrons. In structure 31, the e_2 type orbitals are substantially destabilized due to an antibonding interaction between the (Nb-N4)_{2} e_2 level and "e_2" orbitals. The calculated energy difference between the e_2 of (O=Nb-N4)_{2}O and the "e_2" of (Nb-N4)_{2}O amounts to 0.4 eV. We have attempted to estimate the "e_2" energy of the more realistic geometry 32 by moving the upper (Nb-N4) unit of 36 in the +x' direction (+0.4 Å) and the lower unit in the -x' direction (-0.4 Å), to see how the deformation affects the "e_2" level. The "e_2" level of 32 so approximated was calculated to lie at ~11.2 eV, which is 0.3 eV higher than the "e_2" of 31. The greater destabilization of the "e_2" indicates that the deformation enhances the Nb d_{xy} (or d_{xz}, d_{yz})-O \sigma pb interactions and increases the energy gap between the e_2 of (O=Nb-N4)_{2}O and the "e_2" of (Nb-N4)_{2}O-Nb-(Nb-N4). While the number cannot be relied upon in a quantitative sense, the orbital energy difference must be a reasonable estimate for the geometrical choice of d^{2}-d^{2} porphyrin dimers of the M_{2}O_{4}^{6-} type.

In the case of d^{2}-d^{2} (M=porphyrin)O_{2}, the e_2-"e_2" energy gap has an even greater significance, simply because two additional electrons reside in the lowest e_2 d levels. Thus d^{2}-d^{2} (M=porphyrin)O_{2} should have a linear O-M-O-M-O bond, M = Mn(III), Ti(IV), or Re(IV) or the like.

We have to note here that although the linear structure of a d^{2}-d^{2} M_{2}O_{4}^{6-} unit minimizes the M d_{xy}-O \sigma pb antibonding interaction, it also involves less \pi-bonding interaction than any other structure. Thus the geometrical choice may be a result of a balance between the two opposing factors. In d^{2}-d^{2} (MoL_{2})O_{3} complexes, the observed geometry is mostly 37 or 38 rather than 39. The linear O-M-O-M-O spine has been found only for d^{2}-d^{2} (Mo-TPP)O_{3} and (M-OEP)O_{3}, M = Mo and W, and for d^{2}-d^{2} M_{2}O_{3} and M_{2}O_{4} units such as Re_{2}O_{5}(dic),31 and [Re_{2}O_{5}(acac-en)_{2}]32.

In geometries 37 and 38, the out-of-phase combination of xy orbitals is left free of M-O \pi interactions, as are the xy orbital combinations of 39, while the in-phase pair of xy orbitals gets involved in M-O-M three-center \pi bonding. Thus 37 and 38 are preferred to 39, owing to the optimal M-O \pi interactions.

Then why does (Mo-TPP)O_{3} not choose 37 or 38, the latter of which may be related to structure 32 of (Nb-TPP)O_{3}? 37 is excluded because two porphyrin rings come in contact with each other. When two porphyrins replace eight ligands L of 38, the lowest out-of-phase combination of xy orbitals is tilted in order to ease a primary repulsive interaction with porphyrin orbitals. This is drawn schematically in 40. The porphyrins are eclipsed to each other, which allows us to make a direct comparison between the lowest level in 38 and the orbital of 40. As a result of the tilting, the lowest d orbital combination is no longer free from M-O \pi interaction. Thus the two d electrons of d^{2}-d^{2} (Mo-TPP)O_{3} prefer residing in the xy combinations of 39 to siting in 40. The change of conformation from an eclipsed one to a staggered one, 41, does not spoil the above argument.

This is the first paper of a series discussing the electronic structure of atypical metalloporphyrins. The second paper will address the structure of porphyrins coordinated to two ML_{2} groups, porphyrin carbene complexes, oxoorin porphyrins, and acetylene addition to Co(TMTAA).

Acknowledgment. We are grateful to C. K. Chang, K. M. Kadish, G. N. La Mar, D. Mansuy, and W. R. Scheidt for in-

Table I. Parameters Used in the Extended Hückel Calculations

<table>
<thead>
<tr>
<th>orbital</th>
<th>H_{ii} (eV)</th>
<th>ξ_1</th>
<th>ξ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe 4s</td>
<td>-8.39</td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>4p</td>
<td>-7.44</td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>3d</td>
<td>-11.40</td>
<td>5.35 (0.5366)</td>
<td>1.80 (0.6678)</td>
</tr>
<tr>
<td>Nb 5s</td>
<td>-10.95</td>
<td>1.89</td>
<td></td>
</tr>
<tr>
<td>5p</td>
<td>-7.59</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td>-13.23</td>
<td>4.08 (0.6401)</td>
<td>1.64 (0.5516)</td>
</tr>
<tr>
<td>Ru 5s</td>
<td>-7.73</td>
<td>2.08</td>
<td></td>
</tr>
<tr>
<td>5p</td>
<td>-4.44</td>
<td>2.04</td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td>-11.23</td>
<td>5.378 (0.5340)</td>
<td>2.303 (0.6365)</td>
</tr>
<tr>
<td>H 1s</td>
<td>-13.60</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>C 2s</td>
<td>-21.40</td>
<td>1.625</td>
<td></td>
</tr>
<tr>
<td>2p</td>
<td>-11.40</td>
<td>1.625</td>
<td></td>
</tr>
<tr>
<td>N 2s</td>
<td>-26.00</td>
<td>1.950</td>
<td></td>
</tr>
<tr>
<td>2p</td>
<td>-13.40</td>
<td>1.950</td>
<td></td>
</tr>
<tr>
<td>O 2s</td>
<td>-32.30</td>
<td>2.275</td>
<td></td>
</tr>
<tr>
<td>2p</td>
<td>-14.80</td>
<td>2.275</td>
<td></td>
</tr>
</tbody>
</table>

* a The metal d functions are of a double-\pi type. The numbers in parentheses are the coefficients of the corresponding Slater orbitals.

Figure 8. A comparison of the e_2 and the e_2-like energy levels of (O=Nb-N4)_{2}O and (Nb-N4)_{2}O. For (Nb-N4)_{2}O, the plane of the O_{3} equilateral triangle bisects the line connecting the two Nb atoms which are located 1.3 Å above and below the center of the plane. The e_2 levels of (Nb-N4)_{2}O fragments for (O=Nb-N4)_{2}O and (Nb-N4)_{2}O are given at the extreme left and the extreme right, respectively.
forming us of their experimental results prior to publication. Preliminary studies of porphyrin dimers of the (N₄M)₀X type were carried out in our group 3 years ago by M.-H. Whangbo. We thank E. Stolz for the typing, J. Jorgensen for the drawings, and the National Science Foundation for its support of this work through Research Grants CHE 7828048 and DMR-7681083 to the Materials Science Center at Cornell University.

Appendix

The Coulomb integrals for iron, niobium, and ruthenium were obtained from charge-iterative calculations on planar Fe-(NH₂)₂⁺ (H₂N)₂⁻-Nb-O(OOCH)²⁻, and Ru(NH₃)₂⁺. The geometrical parameters of the Nb-O(OOCH) portion were taken from the structure of (TPP)Nb=O(OOCH₃).³ The Ru-N and N-H distances were assumed to be 2.15 and 1.03 Å in the octahedral molecule Ru(NH₃)₂⁺. Orbital exponents for the iron 3d functions are those given by Richardson et al.,⁴ while those for the 4s and 4p orbitals are taken from previous work.⁵ The Basch and Gray orbitals are used for the 4d, 5s, and 5p functions of niobium and ruthenium.⁶ These extended Hückel parameters are listed in Table I, together with those for hydrogen, carbon, nitrogen, and oxygen atoms.

Specific Sequestering Agents for the Actinides. 6. Synthetic and Structural Chemistry of Tetrakis(N-alkylalkanehydroxamato)thorium(IV) Complexes

William L. Smith and Kenneth N. Raymond

Contribution from the Department of Chemistry and Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720.

Received June 2, 1980

Abstract: Hydroxamate complexes of the actinides have been investigated as structural archetypes in the design of actinide-specific sequestering agents. The complexes Th[(CH₃)₂CHN(O)O(O)R]₄ have been prepared, from aqueous solutions of Th(IV) and the corresponding hydroxamic acid, for R = C(CH₃)₂ or CH₂C(CH₃)₃ (compounds 1 and 2, respectively). Both complexes 1 and 2 are hydrocarbon soluble and remarkably volatile, subliming near 100 °C (10⁻³ torr). They are fluxional and rapidly exchange hydroxamate ligands in CHCl₃ solution. The uranium(IV) analogue of 1 was also prepared, but the uranium(IV) hydroxamates undergo an internal redox reaction that involves oxygen atom transfer from the ligand to the metal to give a bis(hydroxamato)uranic complex and the amide of one hydroxamate ligand. The physical properties of the thorium hydroxamates complexes seem to be due to their hydrocarbon substituents, and the different steric constraints imposed by the C-substituent tert-butyl and neopentyl groups of 1 and 2, respectively, give rise to dramatically different coordinate geometries. The tert-butyl groups of 1 dominate the stereochemistry of the complex by assuming a tetrahedral disposition around the metal. The coordination polyhedron of 1, which has 4 (S₄) crystallographic symmetry, is nearly cubic. The localization of charge on the nitrogen oxygen of the hydroxamate group makes this ligand unsymmetrical, and this gives rise to a 0.14 Å difference in R(Th-O₃) [2.357 (3) Å] and R(Th-O₅) [2.492 (3) Å]. The sterically less constrained neopentyl derivative 2 shows a more typical eight-coordinate geometry—the D₂d trigonal-faced (mmmm) dodecahedron. Although there is no crystallographically imposed symmetry for 2, the polyhedron is close to the ideal dodecahedron. The average R(Th-O₃) [2.46 (2) Å] is again shorter than R(Th-O₅) [2.46 (2) Å]. There is apparently no sorting of sites by ligand charge, since the O₃ and O₅ atoms are equally distributed between the A and B sites of the dodecahedron. Detailed analysis of the geometries of 1 and 2 are carried out in terms of their shape parameters and explicitly compared to related eight-coordinate complexes. Both compounds 1 and 2 are colorless. Crystals of 1 conform to space group I₄₁/a with a = 17.338 (4) Å and c = 12.706 (4) Å. For 4 formula units per cell the calculated density d.calcd is 1.50 g cm⁻³ and d.obsd is 1.50 (1) g cm⁻³. Crystals of 2 conform to space group P1 with a = 9.777 (2) Å, b = 14.633 (2) Å, c = 18.515 (1) Å, α = 74.0610 (8), β = 88.41 (1)°, and γ = 74.71 (2)°. For 2 formula units per cell d.calcd is 1.30 g cm⁻³ and d.obsd is 1.19 g cm⁻³. Full-matrix least-squares refinement of both structures using all averaged, independent data with F² > 3σ(F²) gave for 1 with 1798 data and 117 variables R = 0.027 and Rₚ = 0.032 and for 2 with 9789 data and 467 variables R = 0.034, Rₚ = 0.042.

A biomimetic approach to the design of tetravalent actinide-specific sequestering agents modeled after bacterial iron-transport agents has suggested the incorporation of catechol or hydroxamic acid ligating groups in an octadentate macrochelate.¹ The complexes formed by actinide(IV) ions and these ligands, in which the steric constraints of a macrochelate are absent, serve as structural archetypes for designing the optimum actinide(IV) macrochelate. The actinide(IV) catecholates have been observed³ to have coordination polyhedra very close to the idealized trigonal-faced dodecahedron in which the m edges are spanned by the ligands. While hydroxamic acids have been used in quantitative analysis and solvent extraction of actinides,⁴ the complexes formed have not been structurally characterized. In order to characterize fully the formulation and coordination geometry of these compounds, we have determined the structures of tetrakis(N-isopropyl-3,3-dimethylbutanehydroxamato)- and tetrakis(N-isopropyl-2,2-dimethylpropanehydroxamato)thorium(IV) (Figure 1) by single-crystal X-ray diffraction.

Experimental Section

The hydroxamic acids were synthesized as described elsewhere.⁵ Anhydrous UCl₄ was purchased from ROC/RIC and ThCl₄·H₂O was obtained from City Chemical Co. Reactions using U(IV) were performed under dry argon on a vacuum line using degassed solvents. Solutions of U(IV) were manipulated by using Schlenk techniques, and solids were handled in a Dri-Lab HE-43 glovebox under dry argon.

(5) Smith, W. L.; Raymond, K. N., submitted for publication.