palladium. In the amide, the free electron pair on the N atom is donated to the metal leading to a short Y-N bond which can be regarded as virtually a double bond. In the carbonyl, the electron deficiency of the Y atom causes the formation of an "$\gamma$-agostic Y-CH interaction". Due to these interactions the systems can be seen as effectively 16-electron systems. The remaining electron deficiency of the yttrium atom in both compounds is decreased by an additional intramolecular "$\gamma$-agostic Y-CH interaction" between the yttrium atom and the methyl groups of the amide or carbyl ligands, respectively, as can be clearly seen in the X-ray structure as well as in the solid-state $^{13}$C NMR spectra.

Acknowledgment. This work was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Advancement of Pure Research (ZWO).

Registry No. 1, 40885-51-1; 2, 94348-90-0; 3, 102829-91-4; 4, 95197-83-4; Cp*H, 41339-64-4; YCl$_3$THF, 84147-94-4; Na$_2$N(SiMe$_3$)$_2$, 1070-89-9; LiCH(SiMe$_3$)$_2$, 41823-71-6.

Supplementary Material Available: Tables of positional and thermal parameters for all atoms and observed and calculated structure factors, a complete list of bond lengths and angles, and the x-ray drawings of the three molecules (96 pages). Ordering information is given on any current masthead page.

---

Reactivity of Alkynes toward $\eta^2$-CX$_2$ (X = S, Se) Metal Complexes. 1. The [2 + 2] Condensation of an Alkyne on a Metal Carbene: An Experimental and Theoretical Study. 2. Formation and X-ray Structure of Unusual Doubly and Triply Condensed Cyclic Systems

C. Bianchini, C. Mealli, A. Meli, M. Sabat, J. Silvestre, and R. Hoffmann

Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordination, ISSECC-CNR, 50132 Florence, Italy, and Department of Chemistry, Cornell University, Ithaca, New York 14853

Received October 17, 1985

The reaction of (triphos)RhCl($\eta^2$-CX$_2$) [X = S (1), X = Se (2); triphos = CH$_3$(CH$_2$PPh$_2$)$_3$] with (CF$_3$)$_2$C=C(CF$_3$)$_2$ leads to the formation of two new complexes of formula (triphos)ClRh(CF$_3$)=$\equiv$C-(CF$_3$)$_2$C=C(CF$_3$)$_2$X (3 and 4), containing a metallacylobutene unit. The salient structural features of 3 have been ascertained by an X-ray structural study: hexagonal; P6$_{3}$; $a = 23.425$ (6) $\AA$, $c = 18.982$ (5) $\AA$; $R = 0.065$, $R_{w} = 0.060$ for 1394 reflections with $I \geq 3\sigma(I)$. A d$_4$-(triphos)RhCl fragment of the ML$_4$ type is linked to a chelating C(CF$_3$)$_2$C=C(CF$_3$)$_2$ ligand. The four-membered metallacyclobutene ring may result from the addition of an alkyne molecule to the Rh=C linkage of the carbene complex (triphos)ClRhC(CF$_3$)=C(CF$_3$)S$_2$. By reaction with Ag$_2$ or Ti$_2$Cl, Cl$_{-}$ is abstracted from 3 and 4 to give the products [(triphos)Rh(CF$_3$)=$\equiv$C(CF$_3$)$_2$C=C(CF$_3$)$_2$X]BPh$_4$ (5 and 6). Eventually 3 and 4 can be regenerated from 5 and 6 by treatment with chloride anions. The crystal structure of 5 has been determined: monoclinic; $P2_1$/a; $a = 38.649$ (10) $\AA$, $b = 12.281$ (4) $\AA$, $c = 14.643$ (4) $\AA$, $\beta = 97.64$ (2)$^\circ$; $R = 0.061$, $R_{w} = 0.061$ for 5294 reflections with $I \geq 3\sigma(I)$. With respect to 3, one sulfur atom of the five-membered 1,3-dithiol ring replaces the chloride ligand in the coordination of rhodium, thus restoring the original $\eta^2$-bonding mode of one C=S linkage as in the parent compounds 1. An unusual feature of 5 and 6 is that one three-, one four-, and one five-membered ring are all condensed and share an unique carbon atom. The problem of the addition of an alkyne to a M=C (metal-carbene) double bond is analyzed theoretically. Explanations are offered why this type of 2 + 2 cycloaddition, formally symmetry forbidden in organic chemistry, becomes allowed for organometallic reactions which lead to the formation of a metallacyle ring.

Introduction

The 1,3-dipole character of heteroallene molecules of the type X= C= Y (X, Y = S, NR) is enhanced by $\eta^2$-coordin-
reactivity of the carbon disulfide and carbon diselenide reactions leading to which may add a second alkyne molecule as shown in 3151.

Although we have no clear-cut experimental evidence, it may be safely assumed that the key intermediate in the many as two molecules of alkyne to give the unprecedented rhodacyclobutene derivatives (triphos)Rh(CF3)=C-(CF3)CXC(CF3)=C(CF3)X [X = S (3), X = Se (4)]. The crystal structure of 3 has been presented previously.7 This complex, schematically shown in 2, is an uncommon example of a spiran-like organometallic molecule where two rings (a metallacyclobutene and a 1,3-dithio heterocycle) are joined through a shared carbon atom. Recently a related dimetalla spiro heterocycle has been reported as the product of the 3 + 2 cycloaddition of an imidoyl-cobalt unit and CS2.5

Although we have no clear-cut experimental evidence, it may be safely assumed that the key intermediate in the reactions leading to 3 and 4 is a rhodium–carbene species which may add a second alkyne molecule as shown in 3.

In this paper we present in detail the chemistry and reactivity of the carbon disulfide and carbon diselenide derivatives 1 and 2. In addition, it will be shown that the chloride ligand can be easily abstracted from the products 3 and 4 to give new complexes with unique geometrical features.

The last section of the paper is devoted to a MO analysis of the formation of the rhodacyclobutene rings. There is a particular interest in doing so. Since the d6-ML2 unit (triphos)RhCl is isolobal with a methylene group,9 the reaction in 3 may be viewed as the equivalent of the addition of an acetylene to an olefin, that is a 2 + 2 addition. These reactions are well established to be symmetry-forbidden processes.10 Even though the presence of the metal atom technically suppresses the symmetry-based barrier,11 a substantial electronic barrier should remain. However, such reactions are often easily accessible thermally in organometallic chemistry; the metal-promoted metathesis of olefins12 and alkynes13,14 are two illustrative examples in which the key step is believed to involve this type of 2 + 2 addition. A number of recent papers15-17 discuss in some details this apparently contradictory result.

Results and Discussion

Synthesis and Structural Characterization of the Complexes. Yellow crystals of 3 and 4 are formed in 90% yield by reacting at room temperature CH2Cl2 solutions of 1 and 2 with a twofold excess of (F3C)C=C=C(F3). When stoichiometric amounts of alkyne are used, compounds 3 and 4 are obtained in ca. 40% yield, together with equal amounts of the starting η2-heteroallene complex.

Compounds 3 and 4 are diamagnetic and air-stable in the solid state. They are insoluble in common organic solvents and thus have not been studied in solution. Their IR spectra in the region 4000–400 cm⁻¹ are superimposable on each other. Medium absorption at 1625 and 1605 cm⁻¹ are assigned to ν(C=O) of alkene moieties.2d A series of strong bands between 1300 and 1100 cm⁻¹ (1270, 1240, 1170, and 1130 cm⁻¹) reveals the presence of CF3 groups2d in both compounds. An Ortep drawing of the structure of 3 is presented in Figure 1.

There has been no substantial improvement on the refinement of the structure with respect to what previously reported2 on account of the low number of measurable reflections. Accordingly only the salient features of the molecule will be illustrated. The geometry is pseudooctahedral about the rhodium atom. Notice that the chlorine atom is in a trans-axial position with respect to the atom P(3) = Cl = 169.8 (3)° and that the atoms P(1), P(2), C(6), and C(8) describe fairly well the equatorial plane (largest deviation from the least-squares plane = 0.1 Å). Perhaps the best way of looking at the molecule is by focusing on the metallacyclobutene ring. Two adjacent

---

methylenic residues have been substituted for by a d8-ML4 fragment, (triphos)RhCl, and a five-membered 1,3-dithioheterocycle. The four-membered metallocycle is substantially planar (the largest deviation from the least-squares plane is ca. 0.01 Å). Also, the two condensed rings are almost perpendicular to each other (dihedral angle between the planes ca. 88°). In spite of the large standard deviations which affect the bond distances (Table I), there is sufficient indication that the C(7)-C(8) and the C(9)-C(10) linkages have the expected double-bond character. Metathetical reactions of 3 and 4 with a variety of anions such as BPh4-, PF6-, BF4-, Br-, and I- did not lead to the replacement of the chloride ion in 3 and 4. This is indirect chemical evidence that Cl- is bound to the metal in both compounds. By contrast, the chloride ion is easily abstracted by Ag+ or Tl+ to give red cationic derivatives, which have been isolated as BPh4- salts. The latter have general formula [[(triphos)RhC(CF3)=C(CF3)CSC(CF3)=C(CF3)S]+ Cl-].

Compounds 5 and 6 are diamagnetic and air-stable in the solid state and in solution as well. They are soluble in common organic solvents, in which they behave as 1:1 electrolytes (molar conductance value in 10-3 M nitromethane solution: 43 Ω cm2 mol-1 for 5; 45 Ω cm2 mol-1 for 6). The IR spectra are superimposable on each other and show two ν(C=C) stretching vibrations at 1605 and 1585 cm-1. Bands at 1295, 1280, 1240, 1180, 1140, and 1120 cm-1 are assigned to C-F vibrations. The 31P[1H] NMR spectra of 5 and 6 (CD3Cl2, -60 °C) exhibit a typical ABCX pattern. The presence of three types of phosphorus atoms is revealed, giving resonances in a 1:1:1 ratio, each split by the rhodium nucleus. An Ortep drawing of the complex cation in 5 is shown in Figure 2.

The relevant bond distances and angles are listed in Table II. The abstraction of one chloride ion from 3 has not induced the rupture of the metallocyclobutene ring, although some major geometrical rearrangements have occurred. The latter are driven by the necessity of bringing the rhodium nucleus into the coordination sphere of the sulfur atoms of the 1,3-dithioheterocycle to replace the abstracted chloride. Still the complex can be described as pseudoctahedral if one considers the atoms C(6) and S(1), bonded to each other, as two distinct ligands. Actually, the attainment of the 2-coordination mode of one C-S linkage and the formation of the three-membered cycle is one of the most remarkable features of the complex. There are now three condensed cycles (three-, four-, and five-membered) which share one carbon atom, C(6). There may be some strain in attaining this unusual molecular conformation, as shown by the imperfect planarity of the four-membered metal-lating (the deviations from the least-squares plane can be...
as large as 0.10 (7 A). If we compare the relative orientations of the four- and five-membered cycles and that of the (triphos)Rh fragment, we notice some major rearrangements with respect to the previous structure. The plane of the metallacyclobutene ring is no longer coplanar with one of the RhP$_2$ planes but is rotated by 82° so that the C(8) atom now occupies one axial position. Also, notice that the 1,3-dithio heterocycle is no longer perpendicular to the metallacyclobutene ring (dihedral angle between the planes 66.6°). Finally the five- and three-membered rings are far from being coplanar (dihedral angle between the planes ca. 125.7°). This feature suggests that the sulfur atom is roughly sp$^3$ hybridized and that the coordinating lone pair, replacing that of chloride, has prevalent out-of-plane p orbital character.

Interestingly 5 and 6 can be easily converted into the parent compounds 3 and 4 by addition of chloride anions (from PPNCl salt) to their solutions; see 4.

MO Analysis. Formation of the Metallacyclobutene. The key step for the formation of the metallacycle seems to be reaction 3: a d$^8$-Rh carbene complex, 3a, adds an alkyne across the metal–carbon double bond to generate the corresponding metallacyclobutene 3b.

A good starting point for the investigation of 3 is the electronic structure of the reactant, the metal–carbon 3a. The formation of the latter from the Rh–d$^2$-CS$_2$ complex and alkyne is discussed elsewhere$^{18}$ as a part of a general study of the reactivity patterns in metal–CS$_2$ systems. Here it is sufficient to have in hand the molecular orbitals of the d$^5$-ML$_4$–carbon complex. These can be constructed by using the familiar fragmentation approach$^{19}$ from those of a C$_2$-ML$_4$ unit (a simple d$^5$-RhH$_4$$^+$ model has been used) and those of the 1,3-dithio-2-ylidine fragment which has the features of a carbenic fragment. The process is carried out in Figure 3.

At the left are the MOs of the metallic unit. The pattern has been derived in some detail by others,$^{20}$ and only the salient features need to be repeated here. Take the 3-below-2 splitting of an octahedral ML$_6$ system and remove two cis ligands from it. The e$_g$ set is split considerably; the d$_{z^2}$ orbital (3a$_u$) is practically unperturbed whereas the d$_{z^2}$ orbital (3b$_u$) mixes in some p$_2$ character and drops in energy (note the unorthodox coordinate system, which is required for subsequent study of the reactivity of the carbene). Also a metal sp hybrid, 2a$_g$, descends to low energy. The e$_g$ set remains largely unperturbed as a triad of 2a$_g$, b$_1$, and 1a$_g$ orbitals. Only the levels through b$_2$ are filled in this d$^5$ fragment.

Figure 3. Diagram for the interaction between a d$^5$-ML$_4$ fragment and a 1,3-dithio heterocycle.

At right in Figure 3 are the valence orbitals of the five-membered ring. One recognizes the LUMO and HOMO centered on the carbon atom and consisting primarily of a p orbital and a σ lone pair, respectively, both typical of a carbene species. Also, the latter orbitals are substantially similar in energy and shape to the typical a$_1$ and b$_2$ π*-levels of a bent CS$_2$ molecule$^{21-23}$ irrespective of the fact that the CS$_2$ unit here is a part of the cycle. The LUMO may also be viewed as the fourth π-orbital of the five-membered-ring π-framework. Below the HOMO (labeled σ) one finds a π-type orbital localized on the two carbon atoms and accounting for the carbon–carbon double bond. Not shown, and buried lower in energy, are the fully π-bonding levels of the ring and the two symmetry combinations of the sulfur σ lone pairs.

Interacting the two subsets of fragment orbitals produces the pattern displayed in the middle of Figure 3. The σ-donor orbital of the carbene interacts with both orbitals of a$_1$ symmetry to produce 1a$_h$, fully bonding between the metal and carbon atom (this is the Rh-C σ-bond), 2a$_h$, and the high-lying 3a$_h$. Similarly b$_2$ interacts primarily with p producing a substantial amount of back-donation. One should notice, however, that p mixes into 2b$_2$ and mitigates somewhat the strength of this interaction. This destabilizing effect would be larger if the cycle were rotated by 90°, since b$_2$ and not b$_1$ would match σ and p in symmetry. This argument lies at the heart of the preferred orientation of CR$_2$ units in metal–carbene complexes.$^{24}$
A comment relative to the $\sigma - p$ splitting on the right of Figure 3 is in order here. In the frozen geometry used,\textsuperscript{25} the numerical results lead us to believe that the carbene is in a singlet state configuration. From an orbital point of view, the reason is that the LUMO (p) is C–S $\pi$-antibonding, hence destabilized with respect to a pure p carbon atomic function. Also the $\sigma$-orbital is stabilized as the S–C–S angle is closed, as is typical for in-plane $\pi^*$-orbital of AB$^2$ molecules when they are bent. Here the angle used for the calculations is as small as 110°. We face, however, the problem of understanding the observed formation of tetrathiofulvalene derivatives\textsuperscript{26} which can result allegedly from the coupling of two triplets.\textsuperscript{26} Assuming no intersystem crossing,\textsuperscript{27} the carbene 1,3-dithiol-2-ylidene ring is then generated as a triplet. This situation could arise, as suggested by Hall and Taylor.\textsuperscript{28} It could be that the geometry of the cycle within the organometallic system is different from that of the cycle in the gas phase. Notice that the transfer of one electron from $\sigma$ to $\pi$, as it would occur in the triplet state, is consistent with a larger S–C–S angle and longer C–S distances. In turn, the triplet state becomes energetically more accessible than would be anticipated only on the basis of the $\sigma - p$ splitting given in Figure 3.

In looking for possible paths to generate the metallacyclobutene 3b, one faces the choice between two routes: (i) prior coordination of the alkylene and collapse into the four-membered ring; (ii) direct cycloaddition. One quickly realizes that the first possibility involves a high-energy 20e species, unlikely to be formed under the experimental conditions of the reaction. We decided therefore to investigate a direct addition using an idealized one-dimensional potential surface; in other words, all the bond-breaking and -forming processes occur simultaneously, in a synchronized manner. We start with an acetylene at infinite distance and slowly bring it across the Rh=C double bond, eventually forming the metallacyclobutene 3b. This is an assumed and reasonable transit, not a complete potential energy surface.

Due to the low symmetry of the overall system (only a mirror plane of symmetry is maintained throughout, that containing the incipient metallacyclobutene), disentangling the Walsh diagram turns out to be a relatively complex task. We may however simplify the analysis and concentrate on those orbitals symmetric with respect to the mirror plane. After all, the action takes place in this plane; bonds are formed and broken in this region of space. Figure 4 displays the evolution of these MOs as a function of the reaction coordinate.

At the left-hand side are $1b_2$, $2b_2$, $2a_1$, $3b_2$, and $3a_3$ of Figure 3. In between and boxed with a dashed line, we have inserted the in-plane acetylene $\pi$-orbital ($\pi_\sigma$) and its antibonding counterpart ($\pi_{\sigma^*}$). Recall that the pattern is at this point a bare superposition of the levels of the trigonal-bipyramidal carbene with the two relevant levels of an acetylene.\textsuperscript{20}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Evolution of the MO's for the formation of the metallacyclobutene system.}
\end{figure}

When the acetylene is brought in toward the metal complex, all orbitals mix with each other. The actual connections between the starting and ending point of the reaction are drawn with solid lines. However, we wish to understand the intended correlations and those are represented by the dashed lines. What matters in this case in the composition or the character of each molecular orbital. For example, let us take $2b_2$. Technically it correlates with the newly formed Rh–C $\sigma$-bond. Yet, this orbital is $d_{xz}$ in character and should evolve as one component of the pseudo $e_g$ set of the octahedral pattern, i.e., high lying and empty. Similarly, $2a_1$ is mainly $d_{z^2}$ and should emerge as basically nonbonding, down in energy as one component of the pseudo $t_{2g}$ set. The whole picture of Figure 4 may be analyzed along these lines.

Why the molecular orbitals behave the way they do? Simple and qualitative perturbation theory arguments\textsuperscript{20} help to answer the question. The Walsh diagram of Figure 4 may be easily decomposed into two subsets. The first one involves $1b_2$ and $2a_1$. The latter is stabilized by the geometrical distortion (loss of Rh–C $\sigma$-antibonding) while the former tends to be destabilized by the loss of Rh–C $\pi$-bonding. These "intended" behaviors are shown in 5 with dashed lines.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Diagram showing the evolution of the MO's for the formation of the metallacyclobutene system.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure6.png}
\caption{Diagram showing the evolution of the MO's for the formation of the metallacyclobutene system.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{Diagram showing the evolution of the MO's for the formation of the metallacyclobutene system.}
\end{figure}

\textsuperscript{25} That of the cycle found by P. H. Dixneuf and co-workers in: Le Bocse, H.; Dixneuf, P. H.; Adams, R. D. Organometallics 1984, 3, 1919.

\textsuperscript{26} Two singlet methylene face a high energy barrier if approached along a least-motion path. Dimerization of the singlets can be however attained through a non-least-motion path so that a $\sigma$ lone pair of one impinges on the $\pi$ system of the other. See: Hoffmann, R.; Gleiter, R.; Mallory, F. B. J. Am. Chem. Soc. 1975, 92, 1460. Also, see ref 21 and references therein.

\textsuperscript{27} Dimerization of carbene via an "inter-system crossing" cannot be definitely excluded as shown by: Casey, C. P.; Anderson, R. L. J. Chem. Soc., Chem. Commun. 1975, 685.


\textsuperscript{29} The two MO's descend from the in-plane $\pi$ and $\pi^*$ orbitals but are hybridized upon bending of hydrogens away from the metal; see: Hoffmann, D. M.; Hoffmann, R. J. Am. Chem. Soc. 1982, 104, 3898.
Now recall that \(2a_1\) and \(1b_2\) are of the same symmetry in our \(C_2\) system: they repel each other. Essentially, \(1b_2\) mixes in an antibonding way into \(2a_1\), pushing it upwards. And \(2a_1\) mixes in a bonding manner into \(1b_2\), stabilizing it, solid line in 5. A strongly avoided crossing takes place.

The second type of interaction drives the \(2\pi + 2\pi\) cycloaddition and features \(\pi_{ax}, 2b_2, \pi_{ay}, \text{ and } 3b_2\).

Molecular orbitals \(\pi_\sigma\) and \(2b_2\) undergo a \(4e/2\)-orbital destabilizing interaction. As a result \(\pi_\sigma\) is pushed down whereas \(2b_2\) should be destabilized. Technically, this destabilization is added to that of \(2a_1\) which is of the same symmetry and higher in energy. Conversely, \(\pi_{ay}\) and \(3b_2\) enter a \(0e/2\)-orbital interaction pattern that stabilizes tremendously \(\pi_{ay}\) which eventually maintains \(2b_2\) (or rather \(2a_2\), vide supra) low in energy via the circled avoided crossing. The latter is absent in the case of a “pure” \(2\pi + 2\pi\) addition in organic chemistry so that the reaction is indeed symmetry-forbidden.

A pictorial summary of the above considerations is shown in 6. The dashed lines stand for the \(2\)-orbital interactions, whereas the crossing between the dotted lines is the one which is present in organic systems but absent in the present case. One realizes that there should be an electronically induced barrier for the process: \(2b_2\) (in fact \(2a_2\), see above) is substantially destabilized at the transition state.

However the reaction is a facile process and our computation shows no barrier at all for the reaction. This probably is an artifact of the method used in this work but still leads us to think that the barrier, if any, is a small one. Essentially the activation energy is the difference between the destabilization of \(2b_2\) (or rather \(2a_2\) here) and the stabilization of \(\pi_\sigma\). The molecular orbital \(2a_1\) starts relatively high in energy, since it is metal–carbon \(\sigma\)-antibonding. In turn, that means that it does not have to rise too much in energy before it gets depressed in energy by \(\pi_{ay}\). Essentially the metal \(d\)-centered \(2a_1\) acts as a buffer between \(2b_2\) and \(\pi_{ay}\). Electronically the process is reminiscent of the situation encountered in the Tebbe reaction\(^{33}\) taking \(\text{Cp}_2\text{Ti}(\text{CH}_2)_2(\text{C}_2\text{H}_4)\) into a metallacyclobutene. The electronic features of the reaction have been discussed elsewhere.\(^{15a,32}\) We only point out that in both cases a metal orbital (\(2a_1\) in Figure 4) acts as a mediator via an oxidation of the metal center along the reaction.

Returning to Figure 4, one would anticipate that the higher \(2a_1\) and the lower \(\pi_{ay}\), the smaller the activation energy should be. The relative position of \(2a_1\) and \(2b_2\) should be primarily a function of the substituents. It is therefore not surprising to find strong acceptors on the acetylene (\(R = \text{CF}_3\) in 3 and 4)\(^{34}\) and no \(\pi\) acceptor on Rh. For example, carbonyl ligands on Rh would push \(2a_1\) down in energy via interaction of type 7 between \(d_{x^2-y^2}\) and CO \(\pi^n\)'s.

### Table III. Summary of Crystal Data

<table>
<thead>
<tr>
<th>formula</th>
<th>(\text{Cp}_3\text{H}_2\text{ClF}_3\text{P}_2\text{S}_2\text{Rh})</th>
<th>(\text{Cp}_3\text{H}_2\text{BF}_3\text{P}_2\text{S}_2\text{Rh-CH}_3\text{Cl}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mol wt</td>
<td>1163.25</td>
<td>1581.97</td>
</tr>
<tr>
<td>crystal form</td>
<td>hexagonal needle</td>
<td>parallelepiped</td>
</tr>
<tr>
<td>crystal size, mm</td>
<td>(0.09 \times 0.09 \times 0.55)</td>
<td>(0.08 \times 0.32 \times 0.35)</td>
</tr>
<tr>
<td>space group</td>
<td>(P_6_2)</td>
<td>(P_6_2)</td>
</tr>
<tr>
<td>(a), Å</td>
<td>23.425 (6)</td>
<td>38.649 (10)</td>
</tr>
<tr>
<td>(b), Å</td>
<td>23.425 (6)</td>
<td>12.281 (4)</td>
</tr>
<tr>
<td>(c), Å</td>
<td>18.902 (5)</td>
<td>14.644 (4)</td>
</tr>
<tr>
<td>(\beta), deg</td>
<td>97.64 (2)</td>
<td>97.64 (2)</td>
</tr>
<tr>
<td>(V), Å³</td>
<td>9020.5</td>
<td>6888.6</td>
</tr>
<tr>
<td>(Z)</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>(d_{\text{calc}}), g cm(^{-2})</td>
<td>1.28</td>
<td>1.48</td>
</tr>
<tr>
<td>(\mu) (Mo K(\alpha)), cm(^{-1})</td>
<td>5.3</td>
<td>5.2</td>
</tr>
<tr>
<td>radiatn</td>
<td>graphite-monochromated Mo K(\alpha) ((\lambda = 0.71069) Å)</td>
<td>28 range, deg</td>
</tr>
<tr>
<td>scan width, deg</td>
<td>0.08</td>
<td>0.9</td>
</tr>
<tr>
<td>scan speed, deg</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>s(^{-1})</td>
<td>13229</td>
<td>5284</td>
</tr>
<tr>
<td>unique data, (I \geq)</td>
<td>1334</td>
<td>5284</td>
</tr>
<tr>
<td>(3\sigma(I))</td>
<td>236</td>
<td>296</td>
</tr>
<tr>
<td>no. of parameters</td>
<td>236</td>
<td>296</td>
</tr>
</tbody>
</table>

\[ \text{(top view)} \]

**7**

### Considerations on the Formation and Electronic Structure of the Cations ([triphos]Rh(C\(\text{CF}_3\))=C-(CF\(_3\))CXC(CF\(_3\))=C(CF\(_3\))X\(^{+}\).** There is little doubt that the forced removal of chloride from the coordination sphere generates an electron deficiency on the metal. Eventually, this “hole” may be filled by one sulfur lone pair. The X-ray study of 5 shows that this is geometrically feasible with some appropriate reorientations of the four- and five-membered rings relative to the (triphos)Rh fragment. Ultimately, one of the two C–S linkages is \(\pi^2\)-coordinated to the metal, a reminder of the \(\eta^2\)-coordination of the parent Rh–\(\pi^2\)-CS\(_2\) complex 1.

However, the bonding in 5 is substantially different from that in 1. It was pointed out elsewhere\(^{31}\) that the \(\pi^2\)-bonding of a CS\(_2\) species to a metal atom ranges between two limiting descriptions, namely, the Dewar–Chatt–Duncanson (DCD) and the metallacyclopropane models. Essentially, the difference is all in the assignment for the two pairs of electrons forming the M–S and M–C bonds.

---


The metal–olefin description (DCD model) assigns two electrons to the metal (those participating in the π-back-donation) whereas the other two electrons are those of the π-bond of the coordinated linkage (notice that in CS₂ the π-bond is actually delocalized over the three centers). Conversely if all of the four electrons belong formally to the disordered F atoms refined with occupancy factors 0.4.

Table IV. Final Atomic Parameters for Compound 3

<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U, Å²</th>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U, Å²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh</td>
<td>5978 (1)</td>
<td>4676 (1)</td>
<td>0</td>
<td>33 (2)</td>
<td>(Ueq)</td>
<td>C14</td>
<td>6501 (24)</td>
<td>6339 (20)</td>
<td>-1245 (25)</td>
</tr>
<tr>
<td>Cl</td>
<td>6615 (4)</td>
<td>4488 (4)</td>
<td>-881 (5)</td>
<td>46 (3)</td>
<td>C11</td>
<td>5600 (8)</td>
<td>2929 (11)</td>
<td>137 (12)</td>
<td>47 (10)</td>
</tr>
<tr>
<td>S1</td>
<td>7499 (4)</td>
<td>5902 (4)</td>
<td>-408 (5)</td>
<td>47 (3)</td>
<td>C21</td>
<td>5171 (8)</td>
<td>2297 (11)</td>
<td>392 (12)</td>
<td>50 (11)</td>
</tr>
<tr>
<td>S2</td>
<td>6783 (5)</td>
<td>6235 (5)</td>
<td>516 (6)</td>
<td>54 (3)</td>
<td>C31</td>
<td>5394 (8)</td>
<td>1861 (11)</td>
<td>487 (12)</td>
<td>48 (10)</td>
</tr>
<tr>
<td>P1</td>
<td>5251 (4)</td>
<td>3480 (4)</td>
<td>35 (6)</td>
<td>35 (2)</td>
<td>C41</td>
<td>6046 (8)</td>
<td>2036 (11)</td>
<td>329 (12)</td>
<td>55 (11)</td>
</tr>
<tr>
<td>P2</td>
<td>6421 (4)</td>
<td>4463 (4)</td>
<td>1074 (5)</td>
<td>36 (3)</td>
<td>C51</td>
<td>6474 (8)</td>
<td>2667 (11)</td>
<td>74 (12)</td>
<td>50 (10)</td>
</tr>
<tr>
<td>P3</td>
<td>5227 (4)</td>
<td>4783 (4)</td>
<td>691 (5)</td>
<td>30 (2)</td>
<td>C61</td>
<td>6252 (8)</td>
<td>3114 (11)</td>
<td>-22 (12)</td>
<td>64 (11)</td>
</tr>
</tbody>
</table>

Asterisks denote alternative positions of the disordered F atoms refined with occupancy factors 0.4.

It may be, however, that an attack of type 8 could be induced by the appropriate substitution at the exocyclic sulfur atom or by transforming the nature of the metal fragment. A possible strategy is to force some dipole character on the M-C linkage in order to add the alkyne (dipolarophile). A residual positive charge on the carbon atom can be obtained by alkylating the exocyclic sulfur atom. However, the resulting system can be described with three resonance structures 10a–c, of which 10b is certainly (34) Maier, W. Angew. Chem. 1961, 73, 120.
relevant but not necessarily predominant. All the M-\(\eta^2\)-SCSR moieties observed in X-ray crystallographic structural determinations are planar\(^{20}\). In MO terms this means that the carbon \(\pi\) orbital, which should be empty in order to react with the negative carbon of the incoming alkene, is actually involved to a certain extent in \(\pi\)-interactions with the adjacent sulfur atoms.

The second requirement is that of an electron-rich metal. A \(d^3\)-ML\(_4\) fragment where one of the ligands is a hydrogen, which can eventually be abstracted as a proton, should be adequate. As an alternative the starting M-\(\eta^2\)-CS\(_2\) complex can be a planar one, such as \((\text{PR}_3)_2\text{M}(\text{CS})_2\) (M = Pd, Pt\(^{35}\)). In this case the metal has a filled \(d_\pi\) orbital, and eventually the bonding in the resulting complex 11 could be envisaged in terms of a C-S \(\pi^2\)-bonded linkage supported by a ML\(_3\) fragment.

### Experimental Section

**General Data.** All the reactions and manipulations were routinely performed under a nitrogen atmosphere. Literature

---

were those tabulated by Cromer and Waber\textsuperscript{36} with anomalous
mmol). There was an immediate color change from red to yellow.
was essentially performed by using the SHELX76 system.\textsuperscript{3s}
and 0.964.78 for
Lorentz and polarization effects. Numerical absorption corrections
experimental work. As a general procedure three standard re-
addition of ethanol (20 ml) helped the precipitation of yellow
mmol) in CH\textsubscript{2}Cl\textsubscript{2} (20 mL) was treated with PPNCl (0.20 g, 0.35
C, 57.68; H, 3.85; Rh, 6.67; Se, 10.24. Found: C, 57.70; H, 3.88;
CH\textsubscript{2}Cl\textsubscript{2} (5).

CH\textsubscript{2}Cl\textsubscript{2} (5).

CH\textsubscript{2}Cl\textsubscript{2} (5). The quality of the data allowed in this case a much
better structural refinement. The structure was solved by the
Patterson method and Fourier techniques. During the least-
squares refinement all the non-hydrogen atoms, with the exception of
the phenyl carbon atoms, were allotted anisotropic temperature
parameters. The associated high thermal parameters indicated that the solvent
position were probably only partial occupied. Accordingly the atoms of the two solvent molecules were refined isotropically with
occupancy factors 0.5, but no attempt was made to refine those
coefficients. The final difference map revealed two peaks, each
0.6 e/Å\textsuperscript{3} high, located near the first and sixth phenyl ring of the
complex cation. Final coordinates of all non-hydrogen atoms are
reported in Table V.

\textbf{Computational Details.}
All calculations were of the extended Huckel type\textsuperscript{42} using a modified version of the Wolfberg-Helmholz formula.\textsuperscript{52} The parameters for the rhodium atom were the same
as in ref 41. Significant geometrical details are given in the text.

Registry No. 1, 92669-51-7; 2, 95738-92-4; 3, 94070-31-2; 4,
102234-20-8; 5, 102234-22-0; 6, 102234-24-2; (CF\textsubscript{3})\textsubscript{2}C≡C(CF\textsubscript{3})
692-50-2.

\textbf{Supplementary Material Available:} Tables of anisotropic and isotropic temperature factors for 5 and observed and calculated
structure factors for 3 and 5 (42 pages). Ordering information is given on any current masthead page.


\textsuperscript{37} International Tables of Crystallography; Kynoch Press: Birm-

\textsuperscript{38} Sheldrick, G. M. SHELX76, Program for Crystal Structure De-
terminations, University of Cambridge, Cambridge, 1976.


\textsuperscript{40} Ammeter, J. H.; Burgi, H.-B.; Thibeault, J. C.; Hoffmann, R. J.
Am. Chem. Soc. 1978, 100, 5866.

\textsuperscript{41} Hoffmann, D. M.; Hoffmann, R.; Fiesel, C. R. J. Am. Chem. Soc.
1982, 104, 3858.