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Abstract

Using a simple diabatic model of two equivalent energy minima with crossing harmonic potential energy surfaces, we
analyze the vibronic coupling constant iig (e, g = electronic states coupled, i = coupling vibration). /1;, (expressed in
energy units) is a product of h:g (expressed in force units) and (u,|Q;|v.) (expressed in distance units) where hig is the
dynamic off-diagonal vibronic coupling constant, u, and v, are vibrational wave functions for normal mode 7, in the g
and e state respectively, and Q; is normal coordinate of ith mode. We study the way )vi,g depends on three parameters:
the force constant (k), the reduced oscillator mass (m2) and the displacement between two minima along the normal
coordinate of the coupling mode Q; (AQ). For each k there is only one AQ which maximizes )Lig. The maximum in iig
originates from the opposing behavior of 4, and (g|3H /30Q;|e) factors in (k, AQ) space. A strategy for obtaining large
/¢S should adjust properly small AQs in systems with strong multiple bonds (large ks). This condition appears to be
hard to fulfill in experiment. It also emerges that /,, correlates linearly with /(k/m). Hence, to maximize 4,, one should
build a system of light elements. The results presented here may be useful in the experimental search for high-tem-
perature superconductivity, delimiting the space of element combinations which might be investigated. © 2001 Pub-
lished by Elsevier Science B.V.

1. Introduction damental role of electron—phonon coupling in that

theory. Although it is clear that the community

The vibronic coupling constant (VCC) is an
important molecular parameter which describes in
a quantitative way the phenomenon of vibrational
coupling of electronic states. > Interest in VCCs
increased substantially when the BCS theory of su-
perconductivity was born [5], because of the fun-
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2 On the theory of vibronic coupling see Refs. [1-4].

lost some faith in the explanative role of classical
BCS theory after discovery of high-temperature
superconductivity (HTSC) [6] in early ’80s, both
theoretical and experimental investigations of VCCs
are common in literature [7,8]. Despite many (con-
tradictory) claims by proponents of this or that
theory, the HTSC phenomenon remains till today
quite mysterious. Also few of the many compet-
ing theoretical approaches can be easily translated
into chemical language.

Our investigations also have their source in the
phenomenon of superconductivity. Although BCS
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Fig. 1. Correlation of T, predicted by BCS theory with the
experimental value of 7. Numerical data for the points shown
(Al, Pb, K3C60, Li0_9M06017, Ba0_6K0_4BiO3, LaSr0_15CuO4 and
YBCO superconductors) are taken from Ref. [8§].

theory does not allow a quantitative prediction of
the onset and parameters of HTSC, there still ex-
ists a qualitative correlation between experimental
values of the critical temperature (7,) and those
calculated within the BCS theory [9] up to 100 K
(see Fig. 1). BCS theory deals with the full polaron
coupling problem, including terms that are both
diagonal and off-diagonal in the local electronic
populations. Since BCS predicts higher T.s for
larger VCCs, it is reasonable to look systematically
for higher values of the VCC in order to obtain a
higher T, value.

More generally, we are looking for a place for
chemical intuition in thinking about HTSC, ° so as
to provide a reasonable direction to the experi-
mental search for new materials.

? For the work of four groups with a chemical and physical
orientation see Refs. [10-13].

The general plan of our five-part study, entitled
“Chemistry of Vibronic Coupling” is as follows: in
this paper (part 1) we show, using a simple model
of two harmonic potential wells, how to maximize
the VCC 1 * in the “space” of force constants,
normal coordinates and reduced oscillator masses.
In forthcoming papers we will then look closer
at diagonal and off-diagonal VCCs /4 in a space
of “chemical parameters” such as the electroneg-
ativity and covalent/ionic radii of the elements
involved. In part 2 of the series [14] we perform
quantum mechanical (QM) calculations of the
dynamic diagonal VCC for closed shell diatomics
MeX (Me = alkali metal or H, X = halogen or H).
In part 3 [15] we perform QM computations of the
dynamic off-diagonal VCC for mixed-valence and
intermediate valence Me,X systems (Me = alkali
metal or H, X = halogen or H). Finally, in part 4
[16] we will focus on both diagonal and off-diag-
onal VCCs, looking for rules which might help to
understand the influence of Me and X position in
the periodic table on the value of VCC. In part 5 of
the series [17], we will try to understand VCCs as
molecular systems are expanded into solids.

We will be looking to build a bridge between
the VCCs and electron—phonon coupling con-
stants. In our simple considerations of the VCC in
the context of superconductivity we thus hope to
come all the way from simple molecular systems to
solids.

2. Methods of calculations
2.1. Types of vibronic coupling constants

There are many types of VCCs (vibronic cou-
pling constants) used. It is therefore necessary to
define accurately our notation and point of inter-
est.

* For definitions of //eV and /l/eV/A see Section 2 of this
paper.

3 For vibronic coupling in molecules and in solids see Refs.
[18-20]; on the role of vibronic coupling for electronic and
vibrational dynamics see Refs. [21,22]; for charge transfer
processes in condensed media see Refs. [23,24]; on Jahn—Teller
effect in molecules and in solid state see Refs. [25-28].
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Most often a VCC is expressed in force units,
and denoted as 4. There may be diagonal and off-
diagonal VCCs, and linear and nonlinear ones.
Among them we will look closer at the dynamic off-
diagonal linear VCC (hj;g) defined as

hig(Qz') = (g|0H /8Q;le) (typical units meV/A)
(1)

where g and e are the diabatic electronic wave
functions of two vibronically coupled electronic
states, and 0H /0Q; is the derivative of Hamilto-
nian along the normal coordinate Q; through
which coupling occurs. Usually g is assumed to be
the ground state of a system. h;g depends on ge-
ometry of a molecule; in this paper we will be in-
terested only in a dependence of h’;g on one normal
coordinate, Q;.

If g = e, then hig becomes a diagonal linear CC

(R,):
i, = (e|3H [3Qile) (meV/A). (2)

The i), may be thought as a negative force F!
acting on the potential energy surface (PES) of the
excited state e along normal coordinate Q;:

hie:_FZ' (3)

If one determines /', at the equilibrium geometry
of the ground state (go), then /!, becomes a de-
rivative of the g — e excitation energy along Q;,
evaluated at gg:

I, = 8Ee/30; at go. (4)

This definition of /4., is close to chemical intuition;
Eq. (4) says that /!, is large when the energy of
g — e excitation changes substantially between
opposite phases of normal vibration i (extension
and contraction of the bond from its ground state
equilibrium value). Fig. 2a illustrates definition of
h., given in Eq. (4).

Eq. (4) helps us to understand the cases when
hi, = 0. A given vibration i/ has no effect on the
electronic excitation energy when the PES mini-
mum of the excited state e is not displaced along
coordinate Q; in comparison with the PES mini-
mum of the ground state g (Fig. 2b). One way this
might be realized is when vibration i involves

a)

b)

o
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Q

Fig. 2. Schematic PESs for the ground (g) and excited (e) states
along normal coordinate Q;: (a) case of i, # 0; (b) case of
hi,=0.

motion of atoms whose atomic orbitals do not
contribute to the molecular orbitals involved in the
g — e transition. An illustration might be an or-
ganic molecule consisting of a chromophoric part
and a long side aliphatic chain. The vibrations of
the aliphatic chain, separated as they are from the
chromophore part of a molecule, obviously have
no impact on the g — e excitation energy.

When is A, large? Consider the g — e transition
arising from a HOMO/LUMO transition. A, will
be large for vibrations involving a given C,—C,
bond stretch when HOMO and LUMO differ by a
node across the C,—C, bond. It is very likely that a
large C,—Cy bond length difference between the g
and e states (and consequently a strong dependence
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of the g — e excitation energy on the C,—C, bond
length) would be a consequence of such a nodal
change (node in HOMO across the C,—C, bond,
no node in LUMO or vice versa). In other words,
if during an electronic transition the bond order
for a given bond changes much, then only those
vibrations i which involve stretching of this bond
will have large /',

Let us now return for a moment to off-diagonal
CcC h;e. Looking at its definition (Eq. (1)) one can
easily predict when %, vanishes. A, = 0 when:

(i) the molecular vibration i does not have the
proper symmetry to couple states g and e or

(ii) the g — e transition is spin-forbidden. Of
course, there is an additional simple intuitive rule
for h,,, similar to that given for £,

(ii1) among normal vibrational modes which
may couple states g and e, the largest values of h;e
should be found for modes i involving movement
of atoms whose atomic orbitals contribute sub-
stantially to MOs engaged in the g — e transition.
For example, let the g — e transition be a m—r*
transition in a large organic molecule. Let us
concentrate at a certain C,—C, bond, such that
contributions of p, (m) orbitals of C, and C, car-
bon atoms to both g and e states are large. Let the
contribution of p. orbital of C, be of the same sign
in g and e, and let the contribution of p. orbital of
Cy be of the opposite sign in g and e. Under such
conditions a large coupling constant h;e should be
expected for those normal modes with a significant
contribution from a C,—C, stretch.

As we will show in the following papers, inter-
esting correlations may be found for 4, and #, for
a broad range of simple molecules.

The CC which is most important in consider-
ations of superconductivity (usually denoted 1) is
expressed in energy units and defined as

lig = (Rig)y = hey (ug| Qilve) (meV) (5)

where u, and v, are vibrational wave functions for
normal mode 7, in g and e states respectively. The
(uy|Oilv.) integral is computed taking u, with vib-
rational quantum number equal to zero and full
set of v, (vibrational quantum number varies from
0 to co). Again, most often g is here the ground
and e is a certain excited electronic state.

iig and /., (which is defined in a manner similar
to /,,) have energy units. These parameters are
central to classical superconductivity explanations,
because of the BCS theory [5] relationship:

KT, = 114 hvpe exp[(AN) ] ©)

where k is the Boltzmann constant, T, the critical
superconducting temperature, vpe, the cutoff fre-
quency of the phonon spectrum, A the electron—
phonon coupling constant ¢ in solid decreased
by coulombic repulsion of electrons, and Ny the
density of states at the Fermi level. The product 4
Nr is often called the pairing potential, since it
controls the condensation of electrons into boson
pairs. In other words, phonons open energy gaps
at the Fermi level (the magnitude of the gaps may
vary for different vibrations of the lattice). For us
it is essential to note that a large electron—phonon
coupling constant A leads to a high supercon-
ducting transition temperature 7. The present
paper is devoted to iig, a counterpart of BCS 1 in
molecular systems.

The remaining kind of CC which is often used is
a dimensionless one (denoted most often as gég)
and defined as

8eg = [1/heoi] (1) ()

where 7iw; is the energy of vibration i. Definition of
g, is analogous to that given in Eq. (7). While we
are not directly interested in the g}, and g.,, they
are widely used in resonance Raman studies [29],
theory of CT complexes [30] and in the Marcus
theory of electron transfer [31] when analyzing
contributions from various vibrations to distortion
of a molecule upon electron transfer (most often
g., is point of interest in studies based on so-called
crude Born—-Oppenheimer approximation).

So far we have introduced here the coupling
constants for a single normal mode i (K, k,, 2,
Zeer Eug» e )- These are linear CCs. There are cases,
when CCs of higher order than linear should be
considered. The simplest quadratic off-diagonal
CC is defined as

¢ Both diagonal and off-diagonal vibronic coupling constants
enter BCS considerations as mentioned above.
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.. o2
hY, = (g|8°H /30:30Q;e) (meV/A"), (8)
with its diagonal counterpart
WS = (eSH /50,50, le) (meV/A)). (9)

Now, i and j are two normal vibrational modes. In
case i # j, h/ describes vibronic coupling of ¢ and
g states through an i and j combination mode.
When i = j, h% describes vibronic coupling of e
and g through /s first overtone. Of course, qua-
dratic AZg and 2/ may be easily derived from both
hZ, and hY,, respectively. In the present and forth-
coming papers [14-16] in our series ““Chemistry of
vibronic coupling” we will not consider quadratic
and higher CCs.

As no‘;ed earlier, our main interest will be in hig,
hi, and /4, (especially when a g — e transition has
charge-transfer character). The central focus of
this paper is 4,. '

The literature in this field is diverse, traversing
chemistry and physics. There are many current
nomenclatures in place for 4, g and 4. We have
taken time here, with apologies to the experts in
the field, to delineate clearly the relationships be-
tween the different measures of vibronic coupling.

Let us present now the simple model used for
Jipg calculations.

2.2. Model for calculations of the Jvfzg

Imagine two electronic states g and e described
by harmonic potential curves along coordinate Q;
(Fig. 3a). We introduce the variables k, AQ, ¢, and
m. k has physical meaning of a force constant for
vibration i in both e and g states, AQ is the dis-
placement between the minima of e and g states
along Q,, ¢ is the vertical (energy) displacement
between the minima of e and g states, and m is a

7 We consider here a special case when the same vibration is
Herzberg-Teller active and involved in a geometry change upon
electronic excitation. In this context note an opposite case,
when a Herzberg-Teller active mode does not form progression
in the electronic spectrum, and the progression-forming fre-
quencies do not effect vibronic perturbations. See an interesting
contribution on the phenanthrene 3400 A system in Ref. [32].

a)
b)
0] e
v=2
=1
=o V=O
Y \/ \\/
AQ

\j

i
Fig. 3. Schematic PESs for electronic states g and e for the

model used in this paper; (a) ¢ # 0, (b) ¢ = 0. See text for fur-
ther details.

reduced mass for vibration i. In our diabatic model
we assume, similarly to Marcus [33], that the force
constants in states g and e are the same. ® When
¢ =0 we have the case of a degenerate double-
minima potential well, realized for asymmetric
mixed-valence compounds (see Fig. 3b). We want
to find Aig according to Eq. (5), varying k, AQ, ¢,
and m as widely as possible. One immediately
notices that parameter ¢ does not change the value
of /lig (neither the 7, nor the (u|Q;lv,) term) in
our model (although it contributes to the g — e

8 This approximation is usually fulfilled with 10% accuracy,
but deviations as big as £30% are known. We will discuss later
the qualitative impact of these deviations on the value of 4,
while now we will remain within the above assumption.
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excitation energy). Thus, we will exclude parame-
ter ¢ from the space of variables, reducing it to k,
AQ and m. Phenomenologically, these three pa-
rameters fully describe Zig in any molecular system
within a diabatic harmonic potential model.

We have performed a scan of values of the VCC
/i, in the space of the above molecular parameters.
For this purpose a short program in the Python
programming language has been written. Our al-
gorithm computes independently the hi,g term and
(ug|Qilv,) term. The K, term is simply [34]

K., = kAQ, (10)

which requires no integration and is obviously m-
independent.

The (u,|Q;|v.) term is found by a numerical
integration procedure. ° The algorithm used was
Romberg’s extension to the trapezoidal rule for
better computational efficiency. A vibrational wave
function for a quantum oscillator is

¥.(0)) = NH,(v)exp(—y/2) (11)
where

Ne = {(2r0l) 1Ty (12)
is the normalization factor.

Hy(y) = (=1)"exp (4*)d"[exp (—y*)] /dy" (13)
is Hermite’s polynomial and

y = [m211/1]7Q, (14)
o = (k/m)"” (15)

where w, /211 is the frequency of vibration i, and v
is the vibrational quantum number.

Our algorithm computes the (u,|Q:|v.) term
taking up to 15th order Hermite polynomials. We
have observed that due to the normalization factor
N, (strongly decreasing with v) the contribution
from higher orders than the 15th is negligible. The
integration limits were usually (—7, +7) bohrs with
a 0.01 bohr grid, providing fast convergence. For
large values of k and small values of AQ, huge
integration limits were not necessary. Hence,

° Analytical formulas have been obtained in Ref. [35].

Table 1
Values of / and 2 as a function of k and AQ for three different
masses: m = 1, 10, 100 amu

k (hartree/ AQ (bohr) h (hartree/ A (hartree)
bohr?) bohr)

m=1

5 0.27 1.35 0.26
20 0.19 3.8 0.52
50 0.15 7.5 0.82
100 0.13 13 1.16
300 0.1 30 2
500 0.09 45 2.59
700 0.08 56 3.06
1000 0.07 70 3.66
m=10

5 0.15 0.75 0.08
50 0.08 4 0.26
300 0.055 16.5 0.63
500 0.05 25 0.82
700 0.045 31.5 0.96
1000 0.04 40 1.16
m=100

5 0.09 0.45 0.025
50 0.05 2.5 0.08
300 0.03 9 0.2
500 0.025 12.5 0.26
1000 0.02 20 0.36

smaller integration limits of +3 to 5 bohrs were
used. Finally, the (u,|O;|v,) term was multiplied by
KL, to get J,.

Our calculations were performed in atomic
units of /4, atomic mass units, hartrees and bohrs.
In these units: k =1 hartree/bohr* = 1556.7 N/
m = 15.567 mDyne/A. Numerical results are shown
in Table 1.

3. Results and discussion

Fig. 4 presents a plot of )ig and its components:
(ug|Qilv.) and A, as a function of AQ for k = 5 and
m = 1. This plot is central to our considerations.
Its main features can be easily deduced without
calculations. Indeed, this is how we really came a
long way toward understanding of )Lig, before any
computations were performed.

It may be seen in Fig. 4 that there appears a

maximum in /Ii,g, at about 0.25 bohr. This maxi-
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Fig. 4. Plots of and its components: (u,|Q;[v,) and A, as a
function of AQ for k=5and m=1; hig has been divided by a
factor of 10 to present these three plots on the same scale, al-
though each of them has obviously different units.

mum originates from the opposing behavior of hig
(which, since %, = kAQ, grows with increasing
AQ) and (u|Q;|v) (which decreases with increasing
AQ). The product of these two terms has a maxi-
mum along AQ. Very similar plots (not shown
here) may be obtained for )»Lg and its components:
(ug|Qilv,) and 7}, as a function of k for AQ, m =
constant. Again, for small values of k (k = 0), the
overall /li,g is close to 0, due to the small 7, term.
For large values of k, the (u,|Q;|v.) term is now
very small, giving rise to a small A'eg Again, there is
some optimal value of k, yielding maximum Z,.
The existence of a maximum in 4,, in Fig. 4 is very
interesting in the context of superconductivity. It
means that one needs to find an optimal value of
AQ (hereafter called AQ,) for a given k and m, or
an optimal value of k (hereafter called ko) for a
given AQ and m, in order to attain a maximum
value of the coupling constant iig.

Let us now plot the (AQ, k) points providing
maximum /lig for three different values of m (m =1
amu, 10 amu, 100 amu). As it may be seen in Fig. 5,

0.3 ~
A Q/bohr om=1
| om=10
0.25 Am=100
0.2
0.15 O
01 \D\E\D
0.05 -ty iz Oui
oo -
--------- T
O T T T T 1
0 200 400 600 800 1000
k /hartree bohr?

Fig. 5. (AQ, k) points providing maximum /ligs. Three different
values of reduced oscillator mass, m, (m = 1, 10, 100 amu) have
been assumed.

the position of AQqps is a monotonic and decreas-
ing function of k for all three reduced masses. The
necessity of AQ tuning for given value of ks in
order to maximize Xig may be easily understood.
For very steep parabolas describing the PES of
electronic states g and e, one needs to provide
small AQqp to have (u,|O;|v.) large enough.

On the other hand, it is necessary to separate
the minima of shallow parabolas to obtain large
hig (and hence attain large /lig). Interestingly, the
position of “optimal” AQ,, for a given k varies
with m. At a given k, the larger m, the smaller
AQqp- Or, alternatively, at given AQ, the larger m,
the smaller k. The hyperbolic-like behavior of
optimal (i.e. those providing highest /ligs) (AQ,k)
points may be understood considering four simple
relationships:

Jwg =0 for k =0 (ordinate axis in Fig. 5),
(16a)
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iig =0 for AQ =0 (abscissa axis in Fig. 5),
(16b)

=0 fork—oo and AQ— oo, (16¢)

/l’c',g should be a continuous function of & and AQ.
(16d)

Computational data suggest that with simulta-
neous k and AQ increase, the (u,|Q;|v.) term goes
to zero faster than the /), term goes to infinity (Eq.
(16c)).

Fig. 5 does not tell us about iig values at “op-
timal” (k, AQ) points. Consider such 7, plotted as
a function of \/k/m (Fig. 6).

As may be seen in Fig. 6, A;g is a linear function
of \/k/m for “optimal” (k,AQ) points (of course, it
is not a linear function of /k/m for any (k,AQ)
points). The largest /lig of 3.7 hartree (within the
space of k, m and AQ monitored by us) is reached
for k= 1000 hartree/bohr® ~ 15.6 x 10° mDyne/
A, for m = 1 amu and at AQ,, (about 0.04 bohr).
Of course, 1000 hartree/bohr? is a force constant

. /
) e

a S
e

wl S

0 10 20 30 40

Aeg

Vk/m

Fig. 6. Plot of iig values at “optimal” (k, AQ) points as a
function of /k/m.

value which cannot be reached by any molecular
or extended system. It is two orders of magnitude
larger than the force constant for the nitrogen
molecule N, (=3 hartree/bohr?). That extreme up-
per k limit was not realistic, but chosen only to
illustrate clearly the trend for A/, which holds re-
gardless of the (k,AQ) — space probing. Let us
proceed, limiting ourselves to a reasonable space
of ks in the range from 0 to 5 hartree/bohr?. For a
typical chemical system with k = 1 hartree/bohr?
and m = 10 amu, );g will decrease to 0.037 hartree
(about 1 eV) for “optimal” AQ. For “nonoptimal”
AQ, values of /lig will be smaller than this.

There is one more question that begs to be an-
swered: can /i, be a monotonic indicator of large
/4,87 Let us put the problem in other way: if k
increases and AQ simultaneously decreases (k and
AQ are optimal for each other), what happens to
the hig values? The answer to this question is given
in Fig. 7.

As may be seen in Fig. 7, if optimal (k, AQ) are
provided, the increase in 4,s is connected with

. 4 ]
7\’ 1
eg <>
3.5
3 <
o
2.5
2
1.5
<o A
1 A
< A
A ° m=1
0.5 1 5 A 1
©A 4O m=10
o % . ©m=100]
0 20 40 60 80
hegl

Fig. 7. Illustration of the iig vs /,, monotonic relationship for
three masses (m = 1, 10, 100 amu) at (k, AQ) points optimal for
given A,
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simultaneous monotonic (although less than lin-
ear) increase of Z,,. Let us summarize the results
obtained. The perspectives for maximizing the
coupling constant )vig are as follows:

(i) there exists a maximal value of Z,, which may
be found for a given force constant k by providing
the appropriate AQqp; AQ, decreases with k in-
creasing.

(i1) /Ii,g may be maximized by increasing the k/m
ratio with simultaneous adjustment of AQ.

(iii) iig may be maximized for given m by in-
creasing hig, but k should be precisely adjusted to
AQ.

These rules may be translated into chemical
language as follows:

(iv) large values of )Lig in mixed-valence molec-
ular systems should be sought for in systems with
strong multiple bonds (large ks) built of light ele-
ments (small ms). The AQ should be precisely ad-
justed for a given (k,m) pair. The larger the
expected values of iig, the greater precision in AQ
tuning is necessary.

One can see two serious problems in applying
the qualitative understanding reached, even for
molecules. These are connected with the necessity
of precise AQ adjustment for large k. Under- or
overestimation of AQ results in a strong decrease
of 4,,. The problems are as follows:

(1) Many molecules with large k '° prefer to be
symmetric. Exceptions from a ‘‘self-symmetriza-
tion” of the system for large k are only found
among molecules with large hgg such as symmetric
linear F; or F,H radicals [16]. Such molecules are,
however, extremely unstable toward decomposi-
tion [16].

(2) Another complication is hidden in the real
adiabatic (and not diabatic, as previously as-
sumed) character of the g and e states, which mix,
creating two nondegenerate states: the real ground
and excited state of a system (see next section).
According to the simplest theory using adiabatic
potentials [36], strong adiabaticity influences AQ

19 We mean here k, which has been used by us to describe
curvature of parabolas in a diabatic potential model, and not a
real force constant for antisymmetric stretch of F3 or F,H.
Obviously the latter is imaginary for both systems.

in a major way, usually leading to symmetrization
of a molecule along Q;. Given adiabaticity as one
more independent parameter, it is not easy to
guess and provide the “optimum” value of AQ for
given molecule.

These examples show how difficult it will actu-
ally be to design large 4,, by playing with AQ.

Our observations of the existence of optimal AQ
for given k have an interesting counterpart in
studies of high-temperature superconductors. As
experimental 7, vs doping (x) and 7. vs external
pressure (p) curves show, there exists an optimal
level of doping and an optimal external pressure
applied which allow T, maximization [37,38]. Ei-
ther too small or too large values of x and p
strongly influence bond distances and lead to dis-
appearance of the HTSC phenomenon. On the
other hand, experimental data (mainly for the
well-studied cuprates [39,40]) indicate a strong
correlation of HTSC with lattice instability and
phase transitions in these complex solid state sys-
tems.

Let us now briefly discuss the qualitative impact
of deviations from diabaticity and harmonicity on
final value of .

3.1. The effects of deviations from diabaticity and
harmonicity on 7,

In the simple model used, we have assumed
harmonicity of the vibrations in g and e states
along Q; (with force constants equal in both states,
k, = k,) and diabaticity (PESs for states g and e
cross at Q; =0, see Fig. 3b). We would like to
discuss now briefly and in a qualitative way the
impact of breakdown of these assumptions on the
value of /lig.

(i) What if k, # k,? Since we decided to look for
large )vfzgs among systems with strong multiple
bonds (providing large ks), we should not be
bothered by eventual breakdown of the k. =k,
assumption. To demonstrate this, consider a typ-
ical mixed-valence (MV) system of type {M"" —
A" — M"D*1 Given the same o skeleton in two
“units” differing by one electron (M"* — A"~ and
A" — M"DH) the differences in stretching force
constants for the above units originate exclusively
from the partial © bonding. Since m bonds are
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Fig. 8. Impact of (a) anharmonicity and (b) increasing adi-
abaticity, on PES and vibrational wave functions in a system
with degenerate double-minima potential wells.

much weaker than ¢ bonds, stretching force con-
stants for the above units will not differ much.
Hence, our assumption of k, = k, will be violated
only slightly.

(i) What if vibrations are not harmonic? The
effect of anharmonicity of vibrations on our model
is shown in Fig. 8a.

It seems that anharmonicity has a double im-
pact on }vf,g: through 7}, and also through (u,|Q;[v.).
While anharmonicity increases hig (by comparison
with harmonic case), it diminishes the (u,|Q;|v.)
term. The result of the interplay of hig and
(uy|Oilve) (though the influence of these two seems
to cancel to some extent) is difficult to deduce.
And, in experiment, is difficult to control. More
exact studies (using Morse potentials for example)
might be performed in order to determine quan-
titatively the role of anharmonicity for /Iig.

(iii) What if the system is adiabatic? The effect
of increasing adiabaticity is illustrated in Fig. 8b
[41]. Among factors discussed so far, adiabaticity
(measured by electronic coupling parameter 4
[34,36]) undoubtedly has the strongest impact on
/Jeg Again, its role is not easily quantified. Adia-
baticity influences values of 4,, AQ and (u,|Qi|v.),
ie. 4, and 4 are not independent parameters.
In our opinion, the most significant influence of
increasing adiabaticity on )Lig is connected with
the tendency for symmetrizing a molecule even for
large hég (a mixed-valence system becomes an in-
termediate-valence system). This means that large

;uig may be also hidden in symmetric systems,
contrary to our predictions based on a simplistic

diabatic potential model.

4. Conclusions

Using a simple diabatic model of two equivalent
electronic states with harmonic PESs, we analyze
values of the dynamic off-diagonal VCC (iig) as a
function of three parameters: force constant (k),
reduced oscillator mass (/) and displacement be-
tween two minima along the normal coordinate of
a coupling mode Q; (AQ). We show that for each &k
there is only one AQ which maximizes ),;g. Exis-
tence of a maximum in the /,, originates from the
opposing behavior of /,, and (g[3H /3Q;|e) factors
in (k,AQ) space.

In searching for large /ligs we are then led to
adjusting properly small AQs in systems with
strong multiple bonds (large ks). It also emerges
that /lig correlates linearly with /(k/m). Hence,
one should build system of light elements so to
maximize )L’L;g. However, these conditions are very
hard to realize experimentally, because real sys-
tems with large ks either have a tendency (a) to-
ward symmetrization along Q;, or (b) to chemical
decomposition. AQ and k are not independent
parameters, as well.

The results presented here may be useful in the
experimental search for HTSC, in delimiting the
space of element combinations which should be
investigated. Of course, superconductivity is a very
complex solid state physical phenomenon. It can-
not be explained exclusively by a simple diabatic,
harmonic potential model such as that we used in
our simulations. This is why in parts 2, 3 and 4 of
this series we will computationally examine dy-
namic linear VCCs in real QM molecular systems.
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