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 RADIATION RESEARCH 20, 140-148 (1963)

 Exciton Theory by Second Quantization'

 ROALD HOFFMANN2

 Harvard University, Cambridge, Massachusetts

 I. INTRODUCTION

 The customary procedure in the solution of the exciton problem has been to use

 the apparatus of the Rayleigh-Schrodinger perturbation theory, while limiting one-
 self to first-order corrections. Recently another approach, formulated in the language
 of many-body theory, has been developed and will form the subject of this discus-
 sion. The first steps in the evolution of this approach were taken by Fano (1) and
 Hopfield (2), independently a more extensive and comprehensive treatment has
 been given by Agranovich (3-6) in the Soviet Union. Since the work of the latter
 is unfortunately not so familiar to American researchers as it should be, we have

 felt it desirable to restate here briefly Agranovich's method.
 Let us suppose that we have a system of N particles (molecules), each unit being

 labeled by a site index, s, and possessing a set of energy eigenstates labeled by an
 index f. We define a set of occupation numbers N(sf): N(sf) = 1 if unit s is in
 eigenstate f; N(sf) = 0 if it is not. The following relations hold logically for a system
 with a fixed number of units N:

 E N(sf) = 1 E N(sf) = N N(sf)N(s,) = N(sf)5f, (1)
 f s,f

 We now define creation and annihilation operators b+, b in the occupation num-
 ber space in the following manner:

 b+fC(..N(s).) = (1 -N(pf))C( ..(s) + sp8.Pf. )
 bpfC(... N(s)...) = N(pf)C( ...N(sg) - 8gpf ...)

 1This paper was presented at the Exciton Symposium held at the 10th Annual Meeting of
 the Radiation Research Society, Colorado Springs, May 20-23, 1962. The Society is indebted
 to Dr. Michael Kasha, Director of the Institute of Molecular Biophysics, The Florida State
 University, Tallahassee, for the organization of the symposium and for assembling the manu-
 scripts for publication.

 2 Junior Fellow, Society of Fellows. This work has been supported by the National Institutes
 of Health and the MIT Computation Center.
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 EXCITON THEORY BY SECOND QUANTIZATION

 where C is some function of the occupation numbers. This definition of creation and

 annihilation operators is peculiar to a formulation of excitations and yields the
 Pauli commutation relations (7):

 [bpf, b ]_- [ = 0 [b,b+ b+b] = 0
 (3)

 [bpf, b+1]+ = 1 b+fbf = N(pf )
 In this representation the Hamiltonian

 H-= Hp-+ EVpr (4)
 p p r

 may be written as

 H = E (f I h)bpfbp + E (fg | Vpr h i)b+fb+bphbr, (5)
 p,f,h p r

 f, h, , i

 where

 (f Hp h) = f4 IpfHlph drp

 (fg I Hpr hi) = J *pf4r Vp4phri drp dTr

 In the exciton problem we assume knowledge of the properties of the isolated
 units; we are interested in the changes of these properties when the units interact
 with each other according to Vp,. Thus the first term in the Hamiltonian becomes

 EEpfbfbpfb = EEpfN(pf) (6)
 P,f P,f

 A solution of our problem would consist in a reduction of equation 5 to diagonal form:

 H = EN() = E,,+, (7)

 where the E, are the fundamental excitations of the aggregate.
 The interaction part of equation 5 may be separated into terms with matrix

 coefficients of the following types:

 (a) (fg I V Ifg)

 (b) (fO V JOg) and (00 V fg) (8)
 (c) (fg I V I hi) 0 = ground state

 At this point two simplifications are made by Agranovich. First the interaction of
 excited states, i.e., term (c), is neglected. Second, in term (a), members quadratic
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 HOFFMANN

 in N(pf) are neglected. These simplifications are justified by our interest only in a
 few of the excited states of the aggregate, and in crystals where the number of units
 excited at any time is small compared to N. It may be noted that, if we take V as a
 dipole-dipole interaction, and assume the absence of permanent dipoles in any state,
 the terms involved in the second assumption vanish.

 We next introduce excitons, i.e., operators B+, B, which correspond to the crea-
 tion and annihilation of excitations.

 Bp = b+ bvo

 B,f = bpobpf

 It may be easily verified that

 [Bp,, B8J_ = 0

 [B+, B+ ]_ = 0 (10)

 [Bp,, B+]_ = ap8[1 - 2N(pf)]

 Now the third assumption is made that, since we are working in the low excitation
 region, the average value of N(pf) will be small, and we may replace the approxi-
 mate Bose commutation rule by an exact one. This indeed is the crucial assumption
 of the theory-one which allows a closed solution of the problem. With these as-
 sumptions the Hamiltonian may be rewritten as

 H = Eo + N Ap1N(pf) + / Z (Of I Vpr. gO)(B+g + Bp,)(B+ + Br) (11)
 p,f p-r

 f,

 where

 Apf = Epf - Ep + El ((Of I Vpr Of) - (00 Vpr 00))
 r

 Eo = Z Epo + 2 E (00 I Vpr I ??) (12)
 p p r

 The quadratic form in equation 11 may be diagonalized by a canonical transforma-
 tion (8, 9). The Bose form

 H = E , + 2 E Aagb,+b+ + h E A* bab + E Bpbjb% (13)
 a, # a, ,t a, t

 with

 Aa = Aa

 B*B = B [ba, b+]_ = ba
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 EXCITON THEORY BY SECOND QUANTIZATION

 is reduced to diagonal form as a result of the transformation to new Bose operators
 t :

 b, = E (pUap + p+Vp)
 p (14)

 ba+ = (p+U*p + pVap)
 p

 where U and V are determined from

 EUa = E (Aa,V# + Ba,Ug)

 v * * (15)
 -EVa = (A* U# + B*V) (15)

 with the normalization condition

 (Ua*U - Va*Va) = 1 (16)

 Solutions exist only for certain E = Ep, which are the fundamental excitations of
 the system, since in the new variables

 H = Eo- p I Vap 12 + EEpop+p (17)
 a,p p

 For the exciton problem in a molecular crystal, use is made of the translational
 symmetry; the secular equation is then reduced to order L X M, where L is the
 number of molecules in a unit cell, and M is the number of excited states for each
 molecule. No perturbation expansion is required.

 II. CRITICAL EVALUATION

 Assumptions

 The crucial advantage of the method is the casting of excitons as bosons. Not only
 is the Bogoljubov-Tjablikov canonical transformation apparatus available for
 diagonalizing the Hamiltonian without the use of perturbation theory, but also the
 problem is in a form where the consideration of interactions with other boson sys-
 tems such as phonons or photons is easily accomplished. Historically the study of
 exciton-photon interactions (1, 2) preceded Agranovich's solution. Similar treat-
 ments have been given by Demidenko (10) and Ovander (11), the latter concen-
 trating on the Raman effect in crystals.

 The most important assumption involved is the assumption of perfect rather
 than approximate commutation. Valid questions are: How much error does the
 assumption of perfect Bose commutation introduce? What is the precise definition
 of the low excitation region? Similar assumptions have been used in the theory of
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 144  HOFFMANN

 superconductivity (7), and they are a common starting point in theoretical treat-
 ments of ferromagnetism and the spin wave formalism (12, 13). They appear to be
 adequate in these cases even when a perturbation treatment fails.

 Comparison with Perturbation Theory

 In the exciton problem a comparison of results derived by perturbation theory
 and by second quantization is possible, although difficult. Agranovich's solution
 includes interactions of the ground state with states that are doubly excited, quad-
 ruply excited, etc., and of single excitons with triple excitons, etc.; all these contribu-
 tions enter in higher orders of the perturbation theory. Thus it is clear that the

 050 _ 5ECOND QUANTIZATION
 __ ---- PERTURBATION THEORY
 0.40- ,_
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 FIG. 1. Hypochromism (HB) in a linear chain as a function of OA (in degrees) for OB = 0A +
 7r/3, fA = 1.0 = fB, EA = 6.20 ev, EB = 4.77 ev, Ro = 6A.

This content downloaded from 
�����������128.84.127.160 on Fri, 10 Nov 2023 18:48:21 +00:00����������� 

All use subject to https://about.jstor.org/terms



 EXCITON THEORY BY SECOND QUANTIZATION

 SECOND QUANTIZATION

 - - - - PERTURBATION THEORY

 - -

 If
 f/

 0 20 40 60 80 100 120 140 160 180
 eA

 FIG. 2. Hypochromism (HB) in a linear chain as a function of OA (in degrees) for 0B = OA,
 fA = 1.00, fB = 0.01, EA = 6.20 ev, EB = 4.77 ev, Ro = 8 A.

 second quantized treatment brings in contributions from all orders of perturbation
 theory, but we are ignorant as to how much of each order contribution is included.
 Unfortunately here the picture has been confused by two erroneous calculations
 which reported considerable disagreement between results of the two theories.
 Agranovich (5) attempted an a posteriori perturbation expansion of his results in
 order to compare his calculations with those of Craig (14). In deriving the changes
 in wave functions, a relation between the Bose amplitudes U and V (equation 5 of
 reference 5) was used improperly for the case of a single excitation only. For the
 latter, V = 0, and Agranovich's equation 9 and the section comparing with Craig's
 results are wrong. The comparison is invalidated, and as a matter of fact we have
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 HOFFMANN

 been able to show, at least for the case of one molecule in a unit cell, that such an a
 posteriori expansion of the second quantized results agrees to first order in the
 perturbation theory.

 The second erroneous conclusion was made by us (15) in comparing with a calcu-
 lation on hypochromism in polynucleotides made by Tinoco (16). Here the formulas
 of Agranovich were corrected, but a numerical mistake, as well as one of interpreta-
 tion, led to apparent disagreement.

 Feeling the need for an accurate comparison, we have carried out from scratch
 calculations by both methods on as simple a system as possible-an infinite linear
 chain of identical three-level units.3 The details of the calculation are presented in
 the Appendix. The results show, in general, good agreement between second quan-
 tized and perturbation theory quantities. An illustration of the agreement is given
 in Figs. 1 and 2, where we plot for both cases the calculated hypochromism, i.e.,
 the change in oscillator strength of the lower transition on going from monomer to
 polymer. The cases chosen for illustration are strongly coupled, and the discrepancy
 between the two curves is maximized. For weaker coupling the curves nearly coin-
 cide. It is satisfying that the two approximations agree as well as they do; we feel
 that the differences are minor although not unsignificant. We must, however, express
 pessimism regarding recourse to experiment to decide which approach is really bet-
 ter; naturally occurring systems are hardly as simple as a three-level model.

 III. CONCLUSIONS

 We have outlined Agranovich's solution of the molecular exciton problem in which
 the representation of second quantization is used. The assumptions of the theory,
 in particular the manipulation of excitons as bosons, have been stressed. This tech-
 nique allows a closed solution without the use of a perturbation expansion and
 formally simplifies the consideration of interactions with photons or phonons.
 Previous calculations implying major disagreement between second quantized re-
 sults and those obtained by first-order perturbation theory are incorrect. A detailed
 comparison of the two theories for a perfect one-dimensional aggregate shows in
 general good agreement. Thus the use of either formalism is valid, the choice dic-
 tated by convenience of one or the other in the particular problem studied.

 APPENDIX

 Consider an infinite aggregate of identical molecules, with complete translational
 symmetry in one dimension. Let each molecule possess a ground state 0, a first
 excited state B, and a second excited state A. Let the transition dipoles to these
 molecular states lie in a plane, making angles A and B with the axis of the polymer.

 3 The method of Agranovich in principle cannot be used for small aggregates such as dimers
 and trimers, where N is small. In practice it gives results also in agreement with perturbation
 theory to first order.
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 EXCITON THEORY BY SECOND QUANTIZATION  147

 Further, let the separation of the point dipoles be Ro , and let the corresponding
 transition oscillator strengths, fA and fs , be given. The input parameters for the
 problem are then EA, EB, fA, fB, angles A, B, and Ro . In atomic units, the magni-
 tude of the transition moments may be obtained from the equations

 fK = | I AK | EK

 The following lattice sums enter the problem

 GAA = 2G IA 1 2R-3(1 3 cos2 A)

 GBB = 2G sB |Ro(1 - 3 cos' B)

 GAB = 2G I 11A | B Ro [cos (A - B) - 3 cos A cos BI = GBA

 where

 G= E -= 1.2020569 ...
 L=1 L

 First-order perturbation theory gives for the K = 0 level of the exciton band First-order perturbation theory gives for the K = O level of the exciton band
 (the only one to which a transition is dipole-allowed)

 E = EA + G fA' 1 4 cos (A - B) (EAEB)/2 GAB (fB 1/2 LA =EA + GAA NfA EB 2 - EA 2 fA
 with a similar expression for B with A and B interchanged.4

 In Agranovich's method one first defines

 EA = (EA2 + 2GAAE)1/2 (EB = (EB2 + 2GBBEB)1/2

 'YAB = (EAEBI/EB)1/2 GAB

 The following set of equations must be solved

 (E - ?E)UA - 2YABB(E + EB) UB = 0

 -2%YABA(E + CA) -UA + (E - EB) UB = 0

 subject to the normalization condition

 UA 2eA(E + A)-2 + UB EB(E + (B)-2 = (4E)-1

 The energies are given by (A corresponding to +, B to -)

 E=2 ( 2 + e2) 2 2[( - _ )2 + 2-A

 and the chromic effect for A by

 4 First given by D. L. Dexter (16) and independently by I. Tinoco (17) and W. Rhodes (18).
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 HOFFMANN

 fA f+ 4E+EA + + 4E+eBU fB U6fB1I2E+UA+UB+ (EAB)112COS (A - B)
 NfA NfA (E+ + EA)2 (E+ + eB)2fA fAl/2(E+ + EA) (E+ + EB)

 with a similar expression valid for B, but with + and -, and A and B, interchanged.
 The sum rule, though not obvious, may be proved.
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