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An "average state" of a molecule is defined by distributing the electrons 
equally among the valence orbitals of a minimal basis set Hartree-Fock calcula- 
tion. The resulting eigenvalues, called tempered orbital energies, behave much 
more like the Mulliken-Walsh diagram energies or extended Hiickel eigen- 
values than do the Hartree-Fock canonical orbital energies. 
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1. Introduction 

The present paper is concerned with the following three interrelated questions: 
1) What is to be identified as the ordinate in construction of Mulliken-Walsh 

[1, 2] (MW) diagrams from Hartree-Fock LCAO-MO SCF theory [3] ? 
2) What are the Htickel or extended 1 Hfickel (EH) [4, 5] orbital energies, which 

generally parallel the ordinate of  MW diagrams ? And 
3) In precisely what circumstances can the approximation be made that the total 

energy E in the Hartree-Fock theory is the simple sum of its canonical orbital 
energies e k ? Such an approximation has occasionally been used to justify the 
methodology of  MW rules within the context of Hartree-Fock theory. 

In a series of  papers of  supreme importance for chemistry Mulliken [1] and 
Walsh [23 formulated a set of rules for predicting the geometry and spectra of  

* Author to whom correspondence regarding this article should be addressed. 
1 The term "extended (or three-dimensional) Hfickel" has been used in the literature for a number of 
different schemes, all of which share an assumption of some sort of proportionality of the off-diagonal 
elements of an effective Hamiltonian to the overlap. We include the special case of iterative EH calcula- 
tions, considering the iteration a device to produce a suitable parameter set for such calculations. Some 
of the different forms of the EH method may be found in the following list, which is not comprehensive: 
Refs. [4a-4j]. 
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triatomic and other polyatomic molecules. In a typical MW diagram one seeks the 
variations of certain loosely defined but heuristically useful orbital energies with 
respect to some internuclear coordinate, usually an angular variable. These orbital 
energies, which form the ordinate of the MW diagrams, were termed "ionization 
energies" and "binding energies" by their inventors. The changes in these orbital 
energies with respect to angular variations were deduced on the basis of simple 
hybridization and overlap arguments, From these changes inferences are drawn 
concerning the geometries of a family of molecules in their ground and excited 
states. Rules are derived relating the qualitative features of molecular geometry 
(whether a molecule is linear or bent) to the number of valence electrons in the 
molecule. The MW diagrams have had a tremendous impact on spectroscopy and 
on our feeling of understanding molecular structure in ground and excited states. 
It is no wonder then that since the original publications there have appeared in the 
literature numerous articles attempting to formulate or derive these diagrams in a 
rigorous manner from Hartree-Fock LCAO-MO SCF theory. These contributions 
have been reviewed by Buenker and Peyerimhoff [6]. 

As one tries to give a rigorous formulation of the MW diagrams, or the rules 
governing molecular geometry derived therefrom, the major problem that is con- 
fronted is that in the Hartree Fock SCF theory the total energy E is not equal to a 
simple sum of orbital energies. Instead 

nk k-- Vee+ V.. (1) 
k 

where the ek'S are the canonical orbital energies, n k the orbital occupation numbers, 
Vee the electron-electron, and V,, the nuclear-nuclear repulsion energies respec- 
tively. Implicit in the MW formulation is a set of "orbital energies" having the 
property that the changes in the total energy are given at least approximately by 
the changes in the sum of these orbital energies. The Hartree-Fock energy expres- 
sion does not present us with a unique or obvious energy partitioning into energy 
components associated with each molecular orbital such that their sum is the true 
total energy. Several ingenious energy partitioning schemes have been proposed 
[7], which have been reviewed by Buenker and Peyerimhoff [6]. In our opinion 
they have not met with much success. Perhaps most interesting is the recently pro- 
posed formalism of Davidson [-8]. A set of Internally Consistent SCF (ICSCF) 
energies is constructed, whose sum is exactly equal to the total energy E, and which 
have many properties in common with Walsh's binding energies. We shall return 
to the subject of ICSCF energies later in the paper. 

The semiempirical extended Hfickel model determines orbital energies es from a 
one-electron effective Hamiltonian, whose matrix elements are assigned according 
to some definite prescription. The relation 

E =  Z nk es (2) 
k 

is used for calculating the total energy. The orbital energies of EH calculations 
generally parallel the MW orbital energies, even when they are wrong! Like the 
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implicit assumption of  the MW formalism, in the EH model the changes in the 
total energy are given by the changes in the sum of orbital energies. 

Clearly the energy relations of  Eqs. (1) and (2) are at variance. The use of  formula (2) 
has occasionally been rationalized by suggesting that either V,, and Vee largely 
cancel each other, or V n , -  Nee is a slowly varying function of the internuclear 
separations. Allen, Buenker, Peyerimhoff and their coworkers [9] 2 have published 
a series of  articles over a span of several years, their thesis being that the ordinate 
of  M W  diagrams in SCF theory should be identified with the SCF canonical 
orbital energy. They have reasoned that the equilibrium geometry is determined 
by the gradient of  the total energy and not the total energy itself, and that the 
success of  the M W  rules is to be traced to the fact that for most molecules changes 
in V , , - N e e  a r e  indeed slowly varying functions of  geometrical variables. The 
initial studies in this area were very encouraging, but a number  of  failures was soon 
encountered. 3 This has prompted Buenker and Peyerimhoff to suggest an alterna- 
tive procedure [6] for constructing M W  diagrams in ab ini t io calculations, and 
Davidson [8] to define a new set of  orbital energies, as described earlier. 

There have been suggestions in the literature [5a] to identify the ordinate in the 
MW diagrams as the orbital energy in the EH method,  but the connection between 
the two remains unclear. It is of  interest in this context to point out that in a recent 
paper  Ruedenberg [10] 4 reported a relationship between the total energy E in 
HF-SCF theory and the canonical orbital energies ek, i.e. 

E = g ~ n i e i (3) 
i 

where k =  1.5 or 1.55. This equation is based on previous studies by Politzer [11] 
and Fraga [12], and holds only at the equilibrium geometry of the molecule. 
While it is supportive of  the general methodology of the EH scheme, it does not 
guarantee that changes in orbital energies e k should dominate the changes in the 
total energy E. 

Are the extended Hiickel energies, ~ ,  just approximations to the correct HF  
canonical energies e k ? The previously mentioned work on the relationship of M W  
diagrams and HF canonical energies and other studies by L. C. Allen and co- 
workers [13] carry that implication. Several at tempts at deriving, justifying, or 
understanding the EH model from the correct HF  SCF theory have been made 
over the years [14, 15]. 5 Most of  these consider the EH way of choosing Fock 
matrix elements as an approximation to the corresponding ab ini t io  SCF Fock 
matrix elements of  the ground st~tte of  the molecule. However,  for neutral molecules 

2 The relationship between SCF canonical orbital energies and Walsh's rules was first discussed by 
means of actual ab initio calculations in a series of four papers: Ref. [9a] AH2, A H  3 systems; Ref. [9b] 
B 2 H 6 and C 2 H 6 ; Ref. [,9c] F 2 O, Li20 , FOH, LiOH ; Ref. [-9d] Oa, N 3 . Subsequent calculations on this 
subject carried out by these workers include Refs. [9e-9p]. For some more references on this subject see 
footnote 10 of Ref. [-6]. 
a See pages 132-134 in the review article by Buenker and Peyerimhoff, Ref. [-6]. 
4 The approximation of Eq. (3) is less well satisfied when second-row atoms are involved: Ref. [ 10b]. 
5 For a rather different approach, not based on the HF model, see Ref. [15]. 
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SCF calculations generally put the virtual e k at positive energy, but the EH calcula- 
tions usually have several vacant orbitals below ionization. This distinction has 
been noted on several occasions, but has not been pursued [16]. 6 

In an ab initio SCF calculation the canonical orbital energies are functions of the 
specific state, ground or excited, on which the calculation is being performed. In 
many of the cases where the SCF ek'S do not parallel the MW results the discre- 
pancy is due to the unsatisfactory character of the virtual orbitals in an HF SCF 
procedure. This difficulty has been described by Stenkamp and Davidson [8b] as 
follows: 

"Because the RHF self-consistent-field procedure treats virtual orbitals in an 
unsatisfactory manner, the energy assigned to an orbital changes drastically 
depending on whether it is occupied or empty. Thus in contrast to Hiickel 
theory and Walsh's reasoning, the canonical orbital energy plots change 
appearance not only between the molecules, but also from state to state of  the 
same molecule." 

Thus in variance with the MW binding energies, the SCF orbital energies are sensi- 
tive functions of the electronic configuration. The extended Htickel energies, 
though sensitive to parameter choice, are in this respect closer to the MW binding 
energies. The realization of the configuration dependence of the SCF ek'S leads 
naturally to the formulation of the following question, which we will endeavor to 
answer: "Can one define a set of canonical orbital energies within an SCF-MO 
procedure which is independent of  the electronic configuration of the molecule ? I f  
yes, then how do these orbital energies compare to the EH energies and the MW 
binding energies ?" 

2. The Concept of the "Average State" and Tempered Orbital Energies 

In a conventional HF SCF-MO calculation an antisymmetric determinant of the 
molecular orbitals is built for a given electronic state of the molecule (whether the 
molecule is in ground state, first excited state, etc.). These molecular orbitals are 
varied subject to the constraints of orthonormality and certain symmetry require- 
ments, so as to make the total energy stationary. The result of such variation is a 
set of  molecular orbitals which describe that electronic state of the molecule in a 
best way. Associated with these molecular orbitals are the canonical orbital 
energies which in Koopmans '  approximation are equal to the ionization energies. 
The tendency in the past has been to carry out a SCF calculation on the ground 
state of the molecule and identify the ground state canonical orbital energies as the 
ordinate of MW diagrams. 

Our proposal is that the emphasis should be shifted from a variationally best 
ground state function to a compromise wavefunction which, while it cannot pro- 
vide the total energy of any one state, tries to describe all the electronic states of the 
molecule in a democratic fashion. This can be done in one SCF calculation, if 

6 See for instance footnote 20 of Ref. [13b]. 
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instead of minimizing the energy of any specific state, we minimize some kind of 
average of the total energy of all the electronic states of the molecule, starting from 
a common set of orthonormal spin orbitals and imposing the constraints of the 
symmetry and orthonormality. The SCF canonical energies of this "average state" 
of the molecule will not provide the ionization energies of the molecule as well as 
the SCF canonical orbital energies do, but they will be some kind of average of 
SCF canonical orbital energies of various electronic states of the molecule. The 
hope is that the gradients of these configuration-averaged energies will control the 
total energy changes better than the canonical orbital energies. 

In the following we describe the details of how the energy averaging is accomplished. 
The transition state concept developed in the Hartree-Fock theory by Pickup, 
Goscinski and coworkers [17] provides some of the necessary guidelines for our 
task. A similar energy averaging has been discussed at the multi-configuration SCF 
level by Hinze et aL 1-18]. The use of fractional occupancies as in our calculations is 
not novel, but has been used as well at several places in the past [19]. Our concept 
of the "average state" has some resemblance to the "standard excited state" of 
G. G. Hall [20], and the hyper-Hartree-Fock [21] method of Slater in conjunction 
with atomic calculations. Some recent work by I. Absar [22] is very similar to our 
approach. 

We assume that the calculations are to be performed in the basis of m linearly 
independent real atomic orbitals (AO's). Let there be n electrons in the molecule, 
where the number n < m. In a conventional HF LCAO-MO calculation [3] we 
compose the p = 2m orthonormal molecular spin-orbitals (MSO's) as linear com- 
binations of m AO's. For simplicity and illustrative purposes we consider here the 
unrestricted Hartree-Fock approach and assume thatp MSO's are associated with 
the p non-degenerate eigenvalues. The constraints of symmetry and degeneracy 
can, however, be easily introduced. In order to perform a SCF MO calculation the 
first thing to be specified is the electronic configuration of the molecule, i.e. how 
the n electrons are distributed inp MSO's (which MSO is occupied, which is empty, 
etc.), From the n occupied MSO we constitute an antisymmetric Stater deter- 
minantal wavefunction 0, and the optimal MSO's are obtained by the usual 
variational procedure, making the energy 

E--<01HI0> (4) 

stationary imposing the constraints of the orthonormality, 

(O [ ~k) = 1. (5) 

This leads to a set of eigenvalue equations: 

F/=eii, i = l , 2 , . . . , p  (6) 

where the Fock operator 

f = h o +  ~ (Jll J ) ,  (7) 
j= l  

ho is the one-electron operator containing the kinetic energy and the nuclear- 
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attraction operators. The notation <j [[ j>  is used to indicate 

f d  %j*(2) 1 _  {j(2)r(1)-r(2)j(1)} (8) ( j (2)  Pf j(2)>r(1) 
J r12 

wbere j  is j ' th MSO. 

In order to carry out a SCF calculation on the "average" state of the molecule, we 
start from a common set of p orthonormal MSO's and build q=p!/n!(p-n)[ 
antisymmetric Slater determinants corresponding to the q different electronic 
configurations. Instead of  applying the usual variational procedure to make the 
energy E of  a particular state stationary, in the "average state" calculation, the 
energy E,v 

x a E  1 -'k x z E 2  + �9 �9 �9 + x,E" 
Eav - -  (9) 

x 1 + x  2 + .  �9 �9 + x ,  

is made stationary subject to the constraints of  the orthonormality o f p  MSO's. 
In Eq. (9) E 1, E 2 . . . .  , etc. denote the energy of the electronic configuration 
1, 2 . . . .  etc. calculated from the common set of  p-orthonormal MSO's by the 
relation of  Eq. (4). In practice, variation of E "v reduces to the usual HF eigenvalue 
equations, 

F"Vk=ekk, k = l , 2  . . . . .  p. (10) 

The Fock operator F "v is given by the following relation 

p 

FaV=ho+ ~ njfj]]j> (11) 
j = l  

where nj is the occupancy of  the j ' t h  MSO. 

Thus far our discussion has been vague concerning the actual values of  the weight- 
ing factors x 1, x 2 . . . . .  x, in Eq. (9) and the occupancies nj in Eq. (11). We now 
consider some specific cases, First let us put x l ,  x2 . . . .  , x, all equal to 1. This is 
tantamount to weighting all the states equally during energy variation in Eq. (9). 
In such a case it is easy to see that all the occupancies n i in Eq. (11) are equal top/n. 
Alternatively the n electrons are distributed equally among the p MSO's. 

In any LCAO MO SCF calculation the orbital occupancies determine the density 
matrix, which in turn is required to construct the Fock matrix. Let us take a closer 
look at the density matrix of the present "average state". In matrix notation the 
density matrix P is written in terms of the MO coefficient matrix C and the occu- 
pation matrix n as follows 

p= CtnC. (12) 

Here n is the diagonal matrix whose diagonal elements are the occupation numbers 
of each molecular orbital. In the present special case where all the MO's are equally 
populated the matrix n commutes with C 

P= C*nC= C*Cn (13) 
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Without any loss of generality the coefficient matrix C can be considered in the basis 
of orthonormal atomic orbitals. Then 

CtC= CCt= 1 

and Eq. (13) reduces to 

e = n .  

(14) 

(15) 

Eq. (15) has the important implication that the density matrix P is independent of 
the choice of the coefficient matrix C. In a typical SCF calculation an iterative pro- 
cedure is followed to obtain a self-consistent density matrix. The density matrix of 
Eq. (15) is internally self-consistent in the sense that, if the Fock matrix elements 
are set up in terms of this matrix, the self-consistent eigenvectors and the associated 
canonical orbital energies are obtained in just one cycle. The property is strikingly 
similar to extended Htickel-type calculations. 

The problem arises of what one should call the orbital energies of the "average 
state" Fock matrix. They could be designated as "configuration independent 
average" orbital energies, since in some sense they are independent of the electronic 
configuration of the molecule. We prefer to call them "tempered" orbital energies, 
e~, emp. Here the descriptor "tempered" is used in the sense of admixture of orbital 
energies in various electronic states in due proportion to soothe or moderate the 
gradient of these energies, such that these variations are the foremost factor in 
determining the changes in the total energy, as is true of MW binding energies. 
The meaning of this term will become more explicit when the actual numerical 
results are provided. 

We first explored the "average state" concept within the framework of an all 
valence-electron calculation of the CNDO/2 type. In Fig. 1 the angular variation 
of the CNDO/2 canonical orbital energies is plotted for the H20 molecule. This 
graph shows the problems with the assumption that the ordinate in MW diagrams 
is to be identified with the canonical energies, For example Walsh's rules imply 

Fig. 1. CNDO/2 canonical orbital energies for H20 
as a function of HOH angle 
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that a four valence electron molecule should be linear, but that would not follow 
from Fig. 1. If one simply were to sum orbital energies, one would get a bent H20 
molecule (eight valence electrons) but bent too much, with the HOH angle less 
than 45 ~ . 

The extended Hiickel orbital diagram, Fig. 2, would indicate a linear four-electron 
system and, while it also does not predict the structure of water correctly, it does 
have an appearance closer to that of the MW diagram. Another distinct difference 
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Fig. 2. Extended Htickel energies for H20 as a 

function of HOH angle 

between it and the CNDO/2 diagram is in the slope of the highest occupied MO, 
the n u. In the SCF calculation it is stabilized with bending, in the original Walsh 
diagram as well as the EH calculation it is constant in energy. 

The MW diagram of Fig. 3 is constructed with the tempered orbital energies of the 
CNDO/2 calculation. This diagram looks much more like the original H20 Walsh 
diagram, with the mistake of Walsh regarding the slope of the lowest occupied 
orbital, as later pointed out by Mulliken, corrected. The highest occupied orbital is 
constant in energy, a feature in common with the original Walsh diagram as well as 
the EH results. There are now no dangers involved in making predictions about the 
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geometry of a four valence-electron system in the ground state - these are suggested 
to be linear. The sum of the occupied tempered orbital energies is lowest at an HOH 
angle of 135 ~ in reasonable agreement with the 107.5 ~ obtained from the CNDO/2 
calculation when the correct total energy expression, including Vee and V,,, is 
employed. Similar results are obtained for methylene and ethane. 

Encouraged by these results, we proceeded to an evaluation of the tempered orbital 
energies in all-electron ab initio calculations. Some exploratory studies told us that 
the "average state" concept works much better if we keep frozen to 2 the occu- 
pancies of the core orbitals, and distribute the remaining electrons equally among 
the remaining MO's of a minimal basis set calculation. This is equivalent to saying 
that in Eq. (9) we are only looking for a common set of orthonormal MSO's for the 
different electronic configurations in the manifold of MSO's constructed only from 
the valence orbitals. Moreover, the density matrix P in Eq. (13) for the all-electron 
calculation is not any longer internally self-consistent, as we shall point out later in 
the paper. However, despite the non-commutation of n with C in Eq. (13), the ab 
initio calculations in the "average state" converge in just 2 to 3 SCF cycles, much 
quicker than normal SCF calculations. 

The MW diagram for H20 has been constructed once more in Fig. 4, now employ- 
ing the canonical orbital energies of the STO-3G ab initio calculation [23]. It has 
the same features as the CNDO diagram of Fig. 1. Two total energies are plotted in 
Fig. 4 -  one calculated in a rigorous manner, the other a simple sum of valence 
orbital energies. Notice the large difference between the shapes of the two curves. 

Fig. 4. Hartree-Fock canonical energies (top) for HzO as a 

function of HOH angle. Plotted at bottom is the correct total 
energy E and the sum of the canonical orbital energies ~2k Sk for 
the valence orbitals, both referred to a common arbitrary zero 
at 9 0  ~ 
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While ~ e k correctly gives the molecule bent, it yields a much too large difference 
between the 180 ~ and 90 ~ geometries (19 eV compared to 3 eV). 

The angular variation of  ab initio tempered energies is presented in Fig. 5. Once 
again, as in the case of the CNDO/2 tempered orbital energies, the four valence- 
electron AH2 systems are correctly predicted to be linear. The sum of the tempered 
orbital energies for H20 nicely parallels the correct total energy curve. 

~.-52 201 

-34- I 
9 0 *  I 0 II0 120 130  140  150  160  IT0 1 8 0  ~ 

4 I I I I I I I I I 

H-O-H Angle 

Fig. 5. Tempered orbital energies (top) from a HF cal- 
culation for H20. At bottom is plotted the correct total 
energy E and the sum of tempered orbital energies for 
the valence orbitals, both referred to a common 
arbitrary zero at 90 ~ 

The sum of  the valence tempered orbital energies not only parallels better the total 
energy than does the sum of  canonical energies, but also any changes as a function 
of  angle are concentrated into the valence orbitals, For  instance, on going from 
180 ~ to 90 ~ the H20  core orbital, Is on O, changes its ek by 0.184a.u., but 
e~,emp changes by only 0.014 a.u. 

One field in which both extended Htickel calculations and minimum basis set ab 
initio and semiempirical SCF calculations have had moderate success is in the 
calculation of conformational barriers. A CNDO/2 calculation on the ethane tor- 
sional barrier gives the staggered form preferred by 0.093 eV, while a simple sum 
ofSCF ek'S is not very different, 0.091 eV. Similar results are obtained from ab initio 

calculations. A sum of tempered orbital energies also yields the staggered form 
more stable, by 0.135 eV. Ethane is not a very stringent test of the theory, because 
almost any calculation gives a barrier that is approximately correct. A more 
interesting comparison is provided by H202 in Table 1. 

The correct total energy decreases with increasing dihedral angle. In contrast, the 
sum of  canonical orbital energies increases. However, when the total energy is 
expressed as the sum of tempered orbital energies, once again these energy changes 
approximately parallel the real total energy changes. Thus the tempered orbital 
energies appear to be promising for making qualitative predictions of molecular 
conformational preferences. 
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Table 1. Ab initio (STO-3GTO) total energy (a.u.) as a function of HOOH 

dihedral angle a for H2 Oz molecule 

Dihedral  angle E r Z eSCF ~ ~tempered 
in deg. valence valence 

10 - 148,7312 - 10.0402 -9 .2000 

55 - 148.7405 - 10.0117 -9.2211 

100 - 148.7473 -9 .9549  -9 .2350  

140 - 148,7498 -9 .9213  -9 .2408 

165 - 148.7503 -9 .9172  -9.2421 

180 - 148~7504 -9 .9165 -9 .2424  

"A dihedral angle of 180 ~ corresponds to a trans geometry. Other geometrical parameters used are 

ro_n=0.95/~,  r o ~ =  1.475 A, angle O O H = 9 5  ~ 

Before we present some further numerical results based on STO-3G ab initio calcu- 
lations, we would like to introduce a further approximation that improves the per- 
formance of the tempered orbital energies. So far in the "average state" the 
distinction between core and valence orbitals has been recognized by keeping the 
occupancies of the former at two, and distributing the remaining electrons equally 
among the remaining molecular orbitals. In matrix notation this corresponds to a 
partitioning of the occupancy matrix n in Eq. (12) into two blocks 

\ 0  Ino/ 

where the n c are all equal to two and the n v are all equal to each other but not equal 
to two. n' is no longer a multiple of the unit matrix and so does not commute with 
the coefficient matrix C. The density matrix 

P= Ctn'C (17) 

of Eq. (17), unlike the one in Eq. (13), is not internally self-consistent. 

The n' could still commute with C, provided that the latter can also be partitioned 
into core and valence regions, respectively, i.e. 

C = \ 0  I f  J"  

This would be true only if there were no interaction between core and valence 
orbitals. In practice in ab initio calculations such interactions are unavoidable. 
Nevertheless, there are means to separate core and valence orbitals. One way, 
which however leads to many computational difficulties, is to orthogonalize the 
valence orbitals to the core. Another way is to follow through the consequences of  
simply assuming that n' does commute with C even in all-electron calculations. 
Then Eq. (17) will reduce to (19) 

P=n'  (19) 

and once again, as in the "valence only" calculation, the computations for the 
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average state will require only one SCF cycle. The implementation of this concept 
encounters some computational difficulties for reasons that are tied to the way in 
which Roothaan's iterative procedure is typically implemented, for instance in the 
Gaussian-70 package. This we describe now. 

For closed-shell molecules the secular equation to be solved is 

F C  = S C E  (20) 

where Fis the Fock matrix, C the MO coefficient matrix, S the overlap matrix, and 
E is the diagonal eigenvalue matrix. Eq. (20) is generally reduced to a matrix 
eigenvalue problem (21) 

F ' C ' = C ' s  (21) 

by transforming F, C, and S to an orthogonal AO basis. A typical cycle of the 
iterative procedure is executed by setting up the Fock matrix in the basis of non- 
orthogonal AO's, transforming F to F', then diagonalizing F' to yield C' and E. 
The matrix C' is then transformed back to C in the basis of nonorthogonal AO's. 
C is used to form the density matrix P, in turn utilized in the construction o fF  and 
so the process iterates. 

The point of repeating this well-known protocol is to point out that the employ- 
ment of Eq. (19) in place of (17) will be justifiable only in conjunction with Eq. (21) 
and not with (20). However, as stated earlier, computationally it is much easier to 
obtain F'  from F rather than calculating F'  directly in the basis of orthogonal 
atomic orbitals. The evaluation of F requires knowledge of Eq. (18) and not (19). 
Eq. (18) requires knowledge of the coefficient matrix C, which can be achieved 
only through self-consistency. It can, however, be easily shown that the employ- 
ment of Eq. (19) in conjunction with Eq. (20) is correct if the Mulliken approxi- 
mation is involved to partition the Fock operator of the molecule into atomic Fock 
operators. 

The use of Eq. (19) does lead to an improved performance of the tempered orbital 
energies for all-electron calculations. Now these require only one SCF cycle for an 
"average state", like the valence-only computations. A major consequence of the 
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Fig. 6. Total energy, sum of tempered orbital energies, and 
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and HCN (bottom) as a function of bending. In each case the 
three curves are referred to a common energy zero, and in 
each case the energy scale is in eV. For NH 3 two of the curves 
coincide on the scale of the drawing 
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use of Eq. (19) in the construction of the Fock operator is the cutting down of the 
changes in core orbital energies to near zero. For  instance, for the H20  case men- 
tioned earlier the difference between O ls core orbital energies between 180 ~ and 
90 ~ both " tempered" is reduced from 0.014 a.u. to 0.00001 a.u. The results shown 
in Fig. 6 for CH 2 , N H  3 and HCN shows just how much better ~2 ~,emp is than Z ek 
in predicting molecular geometries. In each case only the valence orbital energies 
are summed. For  the 52 ~emp the curves are essentially unchanged by inclusion of  
the core, while for Z ek the disagreement with the correct total energy curve is made 
worse. 

This pleasing success of tempered orbital energies was, however, only short-lived. 
We soon discovered, to our disappointment, a case where the sum of SCF canonical 
energies tracked better the total energy than did the sum of tempered energies. This 
is OF2, as shown in Fig. 7. Was the previous good performance of the tempered 

Fig. 7. Correct total energy E, sum of canonical orbital 
energies Y~ ek, and sum of tempered orbital energies 

,omp for OF2, with respect to a common arbitrary Z e k 
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orbital energies merely fortuitous ? A closer look at the density matrix of  Eq. (19) 
will help us to understand the matter better. The Fock operator constructed from 
this density matrix, whose eigenvalues are the tempered orbital energies, can be 
simply viewed as a superposition of atomic Fock operators. For example, the H 2 0  
average state density matrix that was used in the calculations that led to Fig. 5 was 

O l s  

O2s  

0 2 p x  

p = 02py 

O2p= 

His 

His 

Ols O2s 02px O2p, Ozp =  His His 

2.0 

1.333 

1.333 

1.333 

1.333 

1.333 

1.333 
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The Fock operator constructed from this density matrix is the sum of a Fock 
operator for an oxygen atom containing 7.333 electrons plus the Fock operators of 
two hydrogen atoms each containing 1.333 electrons in their respective ls orbitals. 

Thus a certain ionicity is imposed on the molecule as an inevitable result of the 
prescription of dividing up valence electrons democratically. This ionicity may 
not be far from the correct one for HzO, NH, ,  CH2 and HCN, but turns out to be 
incorrect for F20. 

k has been recognized earlier in the literature that the extended Htickel Hamil- 
tonian may be considered as the superposition of Fock operators associated with 
neutral atoms in the molecule. We will use this idea as a starting point by construc- 
tion of an averaged Fock matrix 

Fay= Z Fna~ (22) 

as the sum o fF  "a~ which are neutral atom Fock matrices. The density matrix which 
will be used to construct the Fock operator of(22) can be described as follows. It is a 
diagonal matrix, divided into atomic blocks, further subdivided into subblocks 
associated with atomic orbitals of different principal quantum number. The 
various atomic orbitals in a given subblock are given equal occupancies. For 
instance, for H20 the density matrix is: 

01s 02s 

2.0 

1.5 

01s 

02s 

02px 

p--- O2py 

02pz 

His  

Has 

02p x 02py O2p z HI~ HI~ 

1.5 

1.5 

1.5 

1.0 

1.0 

The six valence electrons are distributed equally among the 2s and 2p orbitals of 
oxygen. The atoms are kept neutral. It is this kind of density matrix which is 
adopted in our final definition of tempered orbital energies and used throughout 
the rest of the paper. 

In Figs. 8 to 11 the various energy sums are presented for H20, NH3, HCN, HOF, 
F20 , LiOH, and Li20. The reason for this choice of molecules is that we wish to 
cover a range of molecules with different symmetry and degree of covalency, ones 
which obey Walsh's rules and ones which do not, so as to give a broad and fair 
comparison between SCF canonical energies and the tempered orbital energies. 

As a general observation, the sum of tempered orbital energies in all cases clearly 
approximates the rigorous total energy changes much better than does the sum of 
SCF canonical orbital energies. The individual tempered orbital energies also 
behave much more like the MW diagram energies. 
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LiOH and Li20 are interesting cases in that they are eight valence electron AH2, 
yet linear. The sum of tempered orbital energies is essentially flat in going from 90 ~ 
to 180 ~ with a small preference for the latter. Our STO-3G calculations for Li20 
did not converge; however, it is known from extended basis ab initio calculations 
that the sum of the canonical energies leads to a bent geometry. 

We now discuss the energy changes due to inner shell orbitals. In ab initio calcula- 
tions it is generally argued that since MW diagrams plot changes in valence orbitals, 
only a sum of the valence orbital canonical energies should be used in approxi- 
mating the total energy. Yet in the very same ab initio calculations the core energies 
vary widely with geometrical change, i.e. the sum or core orbital energies 
are not constant. This may be seen in Table 2. The changes in SCF canonical 

Table 2. Changes in core orbital energies (eV) 

Molecule Core orbital Canonical Tempered 

CH2 C 1~ e( 180~ ~ 2.945 0.005 
O H  2 O is e(180~ ~ 4.992 0.001 
NH 3 Nls e(120~ ~ 1.106 0.001 
CH4 C1s e(90~ ~ 7.030 0.000 
HCN NI~ e(100~ ~ 0.788 0.019 

Cls e(100~ ~ -0.540 -0.011 
OF 2 F~s e(180~ ~ -3.699 -0.003 

O 1~ e( 180~ - e(90 ~ + 8.420 0.001 
HOF F~s e(180~ ~ ) -0.541 -0.008 

Oas e(180~ ~ + 5.850 0.003 

energies sometimes even exceed the valence orbital changes, as for F 2 0 .  On the 
other hand the tempered orbital energy changes are practically negligible. Thus 
these satisfy much better the assumptions inherent in the MW picture. 

At this point we digress to discuss the calculation of  conformational barriers, a 
field in which nearly all calculational procedures have met with moderate success. 
Consider the series CH3CH3, CH3NH2 and CH3OH. Experimental results, ab 
initio calculations and EH calculations yield barriers for this series in the approxi- 
mate ratio of 3 : 2: 1. This is not the case for the sum of the SCF canonical valence 
orbital energies, which gives 8.3, 6.7, 6.7 kcal/mole respectively for the barrier. 
The sum of tempered orbital energies is 4.4., 2.7, and 1.2 kcal/mole respectively. 

An interesting feature of the EH calculations is that certain orbitals are singled out 
as carrying most of the total energy change. This is not so for the SCF canonical 
orbitals, but does follow for the tempered orbital energies. The point is demon- 
strated in Table 3 for ethane, and obtains for CHaNH2 and CH3OH as well. Thus 
again we see a resemblance between the tempered orbital energies and the extended 
Hiickel orbital energies. 

Thus far we have focussed only on the gradient characteristics of  the two sets of  
orbital energies. Since the tempered orbital energies are associated with some sort 
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Table 3. Ced-sstag orbital by orbital for the ethane 

molecule 

aFor degenerate e levels the energy difference is for 

one orbital of the pair. 

OrbitaP Canonical  Tempered EH 

e 0.080 0.140 0.101 

a~ 0.020 - 0.005 - 0.005 

e - 0.022 - 0.093 - 0.056 

a z 0.025 -0 .018  0.002 

al  0.020 0.015 0.001 

Core 0.050 0.000 0.000 

of average state of the molecule, it is not to be expected that they will be equal to the 
experimental ionization potentials in the Koopmans' approximation. As Table 4 
nevertheless demonstrates, the ordering of the tempered orbitals generally parallels 
the one derived from SCF canonical orbital energies. The CO, NO +, CN- set also 
reproduces the trends of SCF energies in a series of molecules which is important 
in defining a constant scale of o- and n donor and acceptor properties of molecules. 
A separate detailed comparison of SCF and tempered gross atomic populations 
and overlap populations for all the molecules studied shows that all the trends are 
parallel in the two calculational procedures. 

The occupied tempered orbital energies are generally observed to be pushed up 
relative to the canonical orbital energies, whereas the unoccupied or virtual orbitals 
come down in energy. These energy shifts are consistent with the averaged density 
matrix formalism. They also reduce the gap between filled and unfilled levels, much 
as the EH calculations do, but not to the extent that is observed in EH calculations. 
Quantitatively, however, there is little in common between the EH and the 
tempered orbital energies, except for the first few occupied MO's. The reasons for 
this difference will be discussed elsewhere. 

We now approach the third question raised in the beginning of the paper - in what 
circumstances can the approximate relation of the total energy E as the sum of 
canonical orbital energies ek, Eq. (23), be used? 

E =  Z nk~k (23) 

From the aforesaid studies it appears that the approximate relation of the total 
energy E as the sum of the tempered orbital energies 

E =  ~, nketk emp (24) 

is safer to use for the gradient properties of the rigorous total energy expression in 
place of Eq. (23). 

In conclusion the important implications of this paper can be summarized as 
follows: 

1) Within the HF-LCAO-MO theory there exists a set of orbital energies, called 
tempered orbital energies in this paper, which behave much more like the MW 
diagram energies than do the SCF canonical orbital energies. 

2) The sum of these tempered orbital energies in many circumstances can provide 
a shortcut to the rigorous energy changes. 
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Table  4. M o l e c u l a r  o rb i t a l  energies 

Energ ies  

Orbi ta l ,  
Molecu le  s y m m e t r y  Canon ica l  Tempered  E H  

C H  2 lb  1 7.56 0.81 - 11.40 

(Dooh, 1 A 0  3aa - 5 . 8 1  0.81 - 1 1 . 4 0  

lbz - 14.93 - 12.76 - 16.22 

2al  - 2 0 . 6 4  - 17.76 - 2 3 . 6 7  

O H  2 2b 2 21.47 17.76 9.80 
(C2~ , 120 ~ 4a  1 15.43 13.57 0.87 

2b a - 10.24 - 7.49 - 14.80 

3a l  - 1 1 . 2 6  - 9 . 8 4  - 1 5 . 2 5  

lb  2 - 1 7 . 3 1  - 1 7 . 8 5  - 1 7 . 4 1  

2a l  - 3 3 . 9 1  - 3 3 . 8 5  - 3 3 . 2 7  

N H  3 2e 18.62 15.70 0.74 
(C3~, 100 ~ 4a~ 17.31 16.08 17.88 

3al  - 1 0 . 1 2  - 6 . 4 1  - 1 3 . 9 8  

l e  - 1 5 . 1 7  - 1 3 . 3 1  - 1 6 . 2 7  

2a l  - 29.89 - 29.45 - 27.90 

O F  2 5b z 15.16 10.58 - 5.43 

(C2~, 130 ~ 7a l  8.40 4.34 - 7 . 9 3  

2b 1 - 10.48 - 2 . 8 3  - 14.00 

6a 1 - 1 1 . 6 5  - 7 . 1 5  - 1 5 . 7 1  

4b 2 - 1 4 . 4 1  - 1 0 . 1 0  - 1 8 . 0 1  

l a  2 - 15.28 - 10.23 - 18.07 

5a 1 - 17.06 - 12.93 - 18.55 

3b 2 - 1 7 . 8 8  - 1 7 . 4 2  - 1 8 . 5 7  

l b l  - 1 7 . 9 8  - 2 3 . 2 7  - 1 9 . 2 4  

4a l  - 30.67 - 24.09 - 27.97 

2b 2 - 41.93 - 37.36 - 40.00 

3a~ - 4 4 . 6 7  - 4 0 . 4 8  - 4 2 . 9 0  

CO ~z* 8.50 6.09 - 9.20 

a - 12.15 - 4 . 2 3  - 13.49 

- 1 4 . 9 6  - 1 1 . 0 6  - 1 5 . 6 2  

N O  + ~* - 8 . 5 7  2.91 - 1 1 . 0 7  

- 2 9 . 8 9  - 9 . 1 8  - 1 4 . 6 1  

- 30.66 - 12.00 - 16.08 

C N  n* 22.71 7.35 - 8.003 

1.15 - 3 . 5 7  - 1 2 . 2 6 7  
n - 1.78 - 8.84 - 14.782 

P. K. M e h r o t r a  and  R. Hof fmann  

3)  T h e  g r a d i e n t  p r o p e r t i e s  o f  E H  o r b i t a l  e n e r g i e s  a r e  m o r e  l i k e  t h o s e  o f  t h e  

t e m p e r e d  o r b i t a l  e n e r g i e s  t h a n  t h e  S C F  c a n o n i c a l  o r b i t a l  e n e r g i e s .  

4 )  T h e s e  t e m p e r e d  o r b i t a l  e n e r g i e s  a p p e a r  t o  p r o v i d e  a l o n g  s o u g h t  m i s s i n g  l i n k  

a m o n g  S C F  c a n o n i c a l  e n e r g i e s ,  e x t e n d e d  H f i c k e l  o r b i t a l  e n e r g i e s ,  a n d  M u l l i k e n -  

W a l s h  b i n d i n g  e n e r g i e s .  
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