AIP The Journal of Chemical Physics

Extended Hückel Theory. II. σ Orbitals in the Azines

Roald Hoffmann

Citation: J. Chem. Phys. **40**, 2745 (1964); doi: 10.1063/1.1725601 View online: http://dx.doi.org/10.1063/1.1725601 View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v40/i9 Published by the American Institute of Physics.

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/ Journal Information: http://jcp.aip.org/about/about_the_journal Top downloads: http://jcp.aip.org/features/most_downloaded Information for Authors: http://jcp.aip.org/authors

ADVERTISEMENT

⁶ F. Simon and C. von Simson, Z. Physik 20, 100 (1924).
⁶ J. De Smedt and W. H. Keesom, Commun. Phys. Lab. Univ. Leiden, 178b (1925); Physica 5, 344 (1925).
⁷ E. R. Dobbs, B. F. Figgins, G. O. Jones, D. C. Piercey, and D. P. Riley, Nature 178, 483 (1956).
⁸ D. G. Henshaw, Phys. Rev. 111, 1470 (1958).
⁹ C. S. Barrett Acta Cryst 9 621 (1956). Trans. Am. Soc.

⁶ D. G. Henshaw, Phys. Rev. 111, 1470 (1958).
 ⁹ C. S. Barrett, Acta Cryst. 9, 621 (1956); Trans. Am. Soc. Metals 49, 53 (1957); preliminary experiments were on equipment described by L. Meyer, Z. Angew. Phys. 15, 438 (1963).
 ¹⁰ O. S. Edwards and H. Lipson, J. Inst. Metals 69, 177 (1943); Proc. Roy. Soc. (London) A180, 268 (1942).
 ¹¹ J. B. Hess and C. S. Barrett, Trans. AIME 194, 645 (1952).

Extended Hückel Theory. II. o Orbitals in the Azines

ROALD HOFFMANN* Chemistry Department, Harvard University Cambridge, Massachusetts (Received 30 January 1964)

FOR many years it has been implicitly assumed that in a molecule such as pyridine the highest occupied molecular orbital is a lone pair on N.¹ On the basis of calculations of the extended Hückel type² for the monocyclic azines it is suggested that the lonepair concept is inadequate and that the highest occupied σ orbital is considerably delocalized. It should be immediately emphasized that the conclusions are relevant only to the spectroscopic orbital, i.e., the one involved in ionization or $n \rightarrow \pi^*$ transitions. The chemist's loosely defined but extremely useful construct of a lone pair in an organic reaction cannot be analyzed by this method.³

The parameters for carbon and hydrogen are those used previously²: the nitrogen Coulomb integrals were chosen as -13.4 eV (2p) and -26.0 eV (2s), a rough average of the valence state ionization potentials for the two common N valence states.⁴ Calculations were first carried out on NH₃, comparing with the SCF results of Kaplan⁵ and Duncan.⁶ For the top filled orbital, a Mulliken population analysis carried out on Duncan's wavefunction yields the gross atomic populations N_{2p}, 1.719; N_s, 0.239; H, 0.014; i.e., a respectable lone pair, mainly p in character. Use of the relation $H_{ij} = KS_{ij}0.5(H_{ii} + H_{jj})$ with K = 1.75 did not give the correct NH₃ geometry,⁷ while use of $H_{ij} = K'S_{ij}$ with K' = -35 eV gave a good match of the electron dis-

FIG. 1. Numbering system and schematic indication of direction of sp^2 hybrids in pyridine.

tribution in the highest occupied orbital and the correct conformation. Calculations were performed with both methods, a variety of azine geometries, and various assumptions about N parameters; the general conclusions are fairly insensitive to these.

Consider a set of sp^2 hybrids in pyridine, oriented as in Fig. 1. Some representative overlap integrals between hybrids8 are:

$$S_{af} = 0.0915 \qquad S_{ad} = 0.1189 \qquad S_{aH} = 0.0591$$
$$S_{ae} = -0.0996 \qquad S_{cd} = 0.6704.$$

Clearly, the presumed lone pair a mixes with other σ orbitals. A typical calculated charge distribution in the highest molecular orbital occupied in pyridine assigns 2.0 electrons as follows: N₁, 1.06; C_{2,6}, 0.18; C_{3,5}, 0.17; C₄, 0.06; H_{3,5}, 0.03; H_{2,6}, 0.03; H₄, 0.06. Over a wide range of parameters, the extent of localization in pyridine, i.e., the fraction of electrons on the nitrogen varies from 25% to 66%. Localization is better in the higher azines. One curious effect is that increase in nitrogen electronegativity, which at first sight would appear to lead to a better localization of electrons about N, in fact brings the top σ orbital to lower energies, where it interacts more strongly with orbitals of the same symmetry, with resultant increased delocalization. Indeed the best lone pair in these calculations was that in $C_6H_5^{-}$.

In the delocalized highest σ orbital, the electron density which is on N is mostly in the $2p\sigma$ orbital with less than 10% 2s contribution.9 In calculations of oscillator strengths for $\sigma \rightarrow \pi^*$ transitions it is found that two center integrals cannot be neglected. The calculated intensities are too small and are sensitive to the parametrization. An extended discussion of the energy levels and electronic distributions may be obtained from the author.¹⁰

I would like to thank J. Goldin for computational assistance. This work was supported by NIH and the Harvard Computation Center.

⁸ Similar conclusions have been reached by R. S. Mulliken, J. Chim. Phys. (to be published). ⁴ H. A. Skinner and H. O. Pritchard, Trans. Faraday Soc. 49,

1254 (1953); H. Pritchard and H. A. Skinner, Chem. Rev. 55, 745 (1955)

⁶ H. Kaplan, J. Chem. Phys. 26, 1704 (1957).
⁶ A. B. F. Duncan, J. Chem. Phys. 27, 423 (1957).
⁷ A similar failure of the extended Hückel theory occurs for H₂O, which in the calculation prefers a linear configuration. Raising the H Slater exponent to 1.2 or 1.3 changes the H₂O minimum to an angle HOH \equiv 150°, but has no effect on NH₃. In Ref. 2 are detailed some objections to the use of the simple relationship $H_{ij} = K'S_{ij}$.

⁸ In a model geometry of a perfect hexagon with side = 1.40 Å, C-H 1.1 Å. The Slater exponents are H, 1.0; N, 1.950; C, 1.625. ⁹ A similar composition of the lone pair has been suggested by T. Anno and A. Sado, J. Chem. Phys. 29, 1171 (1958)

¹⁰ The computer program used in these calculation and those of Ref. 2 is available from the Quantum Chemistry Program Exchange, Chemistry Department, Indiana University.