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assignments for this molecule are consistent with those for ketene 
imine, thus providing further evidence for the assignments we have 
made for ketene imine. 
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Note Added in Proof. Wentrup et a1.& have recently detected 
the elusive ethynamines HC=CNH2 and PhC=CNH2. 
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Abstract Aggregates in which tetrahedra share faces are rare; this paper describes the electronic structure of some one-dimensional 
chains of this type. The archetype is gracefully winding triple helix with irrational twist, also described by R. Buckminster 
Fuller as a tetrahelix. We examine some realizations of this structure exemplified by stoichiometries such as BR, PtCO, CUI, 
and Tal. Optimum electron counts for approaching stability in this structural type are given. A related tetracapped tetrahedral 
building block, the stella quadrangula or tetraederstern, is also the subject of calculations. Undeformed, it cannot propagate 
in space, but a relatively small distortion of all tetrahedra leads to a reasonably common stacking unit. 

Tetrahedra are a ubiquitous building brick of extended one- 
dimensional structures.' Corner-sharing tetrahedral chains of 
type AX3, I,  are found in many silicates such as enstatite, jadeite, 

2 I 
and spodumene.2 The chain can be linear or helical (e.g. 
NaP03).3 A transition-metal analogue includes K2CuC13.4 
Examples of edge-sharing chains, 2, are KFeS? and K2PtSF6 Still 
other types of tetrahedral chains include the corner-connected Rh, 
or Ru, tetrahedra in the ternary superconducting borides 
REM4B4.7 

Face-sharing tetrahedral chains, howerver, are rare. The iso- 
lated Cu31,- chain in RCu314 (R = organic counterion) contains 
a building block made up of three face-sharing tetrahedra. But 
these blocks are connected by sharing a tetrahedral edge, 3.8 The 
basic structural component in RCu213 is an isolated Cu213- unit 
of two face-sharing tetrahedra, 4.89sa In [ ( C O C ~ ~ ) ( C U I ~ ) ] ~  there 
are units consisting of three face-sharing CUI, tetrahedra.gb 
Recently, there have been reports of [ C U ~ I ~ ] ~ -  and [CuSBr7l2- 
chains, in which there are no less than five face-sharing tetrahedra. 

3 4 

Still another set of molecules with face-sharing tetrahedra as 
units is to be found in the cluster carbonyls. O S ~ ( C O ) , ~ , ' ~  5, can 

+ Cornell University. 
'Haward University. 

be viewed as two tetrahedra sharing a face, and O S ~ ( C O ) , ~ , ~ ~  6, 
is a bicapped tetrahedron, or a "chain" of three tetrahedra sharing 
faces. These tetrahedra are not centered by a metal atom. 

OS,(CO),, 
os, EO),, 

5 6 

( I )  Wells, A. F. Structural Inorganic Chemistry, 4th ed.; Clarendon Press: 

(2) Reference 1, p 817. 
(3) Jost, K. H. Acta Crystallogr. 1961, 14, 844. 
(4) Brink, C,; Kroese, H. A. S.  Acta Crystallogr. 1952,5,433. Brink, C . ;  
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Proc. Natl. Acad. Sei. U.S.A. 1977, 74, 1334. (b) Vandenberg, J. M.; 
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Temp. Phys. 1979, 35, 651. (d) Hornig, H. E.; Shelton, R. N. In Ternary 
Superconductors; Shenoy, G .  K., Dunlap, B. D., Fradin, F. Y., Eds.; North- 
Holland: New York, 1981; p 213. 
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149; Angew. Chem. 1981, 93, 804. 
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Hartl, H. Angew. Chem. 1987, 99, 925. (c) Hartl, H.; Mahdjour-Hassan- 
Abadi, F. Angew. Chem. 1984, 96, 359. Andersson, S.; Jagner, S. J .  Crys- 
tallogr. Spectroscop. Res. 1988, 18, 601. 

(IO) (a) Johnson, B. F. G.; Eady, C. R.; Lewis, J.; Reichert, B. E.; Shel- 
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Figure 1. (a) Band structure, (b) density of states (DOS), and (c) crystal orbital overlap population (COOP) for a BH tetrahedral chain. The solid 
DOS curve shows contributions of pz and pu states on B. The dashed and the dotted curves are the integrated and total DOS. 

The infinite chain of face-sharing tetrahedra, centered or not, 
is unknown. The potential existence of such polymers, especially 
in a remarkable, helical form that we describe in the next section, 
is the subject of this paper. 

Geometrical Aspects 
A face-sharing chain of tetrahedra can be built up by adding 

units one at a time, 7. There is one “dimer” of two tetrahedra, 
with the symmetry of a trigonal bipyramid, and one trimer, a 

7 

bicapped tetrahedron. On adding further units the number of 
possible arrangements grows rapidly-there are two tetramers (the 
first tetramer in 7 is represented by CuSBr;- 9b), five pentamers, 
etc. Of the infinite number of structural possibilities of an infinitely 
extended chain, one has a striking configuration. This is the 
gracefully winding helix 8. 

8 

The geometry of a helix is best defined by its unit twist 0 and 
unit height c.I2 The unit twist is the dihedral angle between 
vectors perpendicularly connecting the successive units and the 
helix axis (see 9). 

I 

9 

There are two ways to describe this helical structure. In the 
simplest way we take one vertex of a tetrahedron as the helical 
unit. Then the coordinates of other units can be generated through 

(12) IUPAC-IUB Commission on Biochemical Nomenclature, 1970. For 
a brief introduction to helical organic polymers see: Vogl, 0.; Jaycox, G. D. 
Polymer 1987, 28, 21 19. 

X,, = a cos (ne), Y,, = a sin (ne), Z,, = nc, where a and care 0.5196 
and 0.3162 of the tetrahedral edge, respectively (see loa). In the 
second description, the helix can be closely associated with a 
trigonal prismatic structure that we will discuss later. The helical 
unit is now composed of three vertices of a tetrahedron, and the 

l 

a 

cose - 
e 9 35.43.. 

b 

IO 

coordinates of all other units can be generated through Xi = a 
cos (ne), Y,’ = a sin (ne), Z,‘ = nc (c  = 0.9487 of the tetrahedral 
edge, see lob). The twist of either 10a or 10b is irrati0na1.I~ 

Since the twist of 8 is irrational,” the helix never repeats itself, 
so to speak. The translational unit cell is infinite. This establishes 
a connection to the currently active field of quasiperiodic struc- 
tures. The lack of a finite translational unit cell might seem at 
first to pose a problem to the calculation of its electronic structure. 
But this is not so; the Bloch theorem still applies when translation 
is accompanied by a r0tati0n.l~ The only difference is that in 
a band the orbital phase change on going from one unit to another 
is induced not only by translation but also by rotation. This will 
become clear in the next section. The tetrahedral helix is also 
called the “Bernal spiral” in association with discussions of liquid 
structures in the physics 1 i te ra t~re . I~  

It may be noted at this point that the lovely spiral of tetrahedra 
has been independently discovered by artists. Buckminster Fdler 

(13) Coxeter, H. S. M. Introduction to Geometry; Wiley: New York, 
1969; p 412. See also: Boerdijk, A. H. Phillips Res. Rep. 1952, 7, 303. 

(14) The only requirement is that the group is Abelian and thus can be 
represented by Bloch waves (e””). In one dimension the group at hand is 
Abelian, but not in higher dimensions. See: (a) Ashcroft, N. W.; Mermin, 
N. D. Solid Stale Physics; Sauders College: Philadelphia, 1976. (b) Lax, 
M. Symmetry Principles in Solid State and Molecular Physics; John Wiley 
& Sons: New York, 1974. 

(15) (a) Bernal, J. D. Proc. R .  Soc. London Ser. A 1964,280, 299. (b) 
Steinhardt, P. J.; Nelson, D. R.; Ronchetti, M. Phys. Rev. Let?. 1981, 47, 
1297; Phys. Rev. B 1983, 28,784. (c) Nelson, D. R. Phys. Rev. B 1983,28, 
5515.  
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Figure 2. (a) Band structure, (b) density of states (DOS), and (c) crystal orbital overlap population (COOP) for a tetrahedral chain of S, S-S 2.1 
A. The DOS (solid line) shows the contribution of an S lone pair, pointing out from the helix. The dotted and dashed lines are the integrated and 
total DOS. 

calls it a tetrahelix168 and there is a public sculpture showing the 
packing of three tetrahelices.16b 
Realizations of the Helix 

We want to be able to specify the most favorable circumstances, 
geometrical and electronic, for the possible existence of the helical 
chain, 8. We will proceed by the construction of some model 
structures, and carry out for these extended Hiickel band calcu- 
lations, looking for favorable electron counts and bonding patterns. 
The details of the calculations are given in the Appendix. 

We begin with an uncentered tetrahedral chain in which we 
put a BH at each vertex. We choose BH because (a) the structure 
is highly triangulated (six triangles meet at each vertex) and boron 
likes triangles and (b) if we were just to take a B atom, it would 
be very "exposed" on the outside. The B-B distance we choose 
is 1.8 A. 

Figure 1 shows the band structure, density of states (DOS), 
and crystal orbital overlap population (COOP) curve for this 
polymer. Note that in the helix symmetry there is only one BH 
per unit cell, so there are few bands. The lowest band is mainly 
B 2s, and the next band is a mixture of B 2p (and some 2s) and 
H Is. 

The band structure is very different from other onedimensional 
s and p bands we or the reader are likely to have seen. The lowest 
band (B 2s), for example, goes up, then down, then up again. This 
is because the unit cell has the same overlap with the next three 
cells (vertex 0 with vertices 1,2, and 3 in loa). At k = ( 1  /3)(r/c), 
the Bloch phase factors for vertices 1, 2, and 3 are dr/3, d2r/3, 
and d*, respectively. The bond orders between vertices 0 and 1 ,  
2, 3 are and - 1 ,  respectively. The total bond order is 
-1 .  At k = (2/3)(r/c), the individual bond order is 
and I ,  and the total is 0. At k = r / c ,  they are -1, 1, and -1 and 
the total is -1. Thus the B 2s band has two minima at  k = 0 and 
(2/3)(r/c) (bond orders 3 and 0) and two maxima at  k = ( I /  
3)(r/c) and r / c  (bond orders -1 and -1). For pr type overlap, 
the band shape is inverted, like the third band in Figure la. 

The states immediately above the energy gap around -8 eV are 
mostly px and py (x, y perpendicular to helix) states. They are 
mainly B-B weak antibonding (see Figure 1,  a and b) and thus 
can be identified as r* type states. Still higher in energy are the 
states involving B-H antibonding. 

The band structure shows that there is a nice gap for two bands 
filled, Le. 4 electrons per BH. At the same Fermi level, ca. -9.5 
eV, there is maximum B-B and B-H bonding. This may be seen 

in the COOP curve. There are actually three distinct pairs of B-B 
bonds, which we may define as concave edge A, convex edge B, 
and "strand" edge C, as shown in 11. The computed overlap 
populations for the neutral BH polymer are shown in 12. Note 
that the concave edge bond is quite a bit weaker than the other 
two bond types. For comparison the B-B overlap population in 
octahedral B H 2- four triangles at  each boron) is 0.554, and in 
icosahedral BI2Hl2 it is 0.483. (2- 

lyw A con cow^ 

' \A  t y p  C strand edge '. I . I  

I I  

0 296 

12 

One might have imagined that another realization of the helix 
might be with main group elements (e.g. P or S) bearing a lone 
pair pointing away, perpendicular to the helix axis. We calculated 
a hypothetical sulfur case, S-S = 2.1 A. The band structure, DOS, 
and COOP curves are shown in Figure 2. Sulfur has 6 electrons 
and three bands should be filled. The Fermi level is high (5.5 
eV) and many S-S antibonding states are filled (see Figure 2c). 
It is energetically very costly for sulfur to adopt this structure. 
In fact, triangulated structures are not common for S .  Two- 
connected structures, including helices, are the norm for this 
element. Note that there are a lot of low-lying "lone pair" states. 
The "lone pairs" point outward from the vertex; they were used 
to form B-H bonds in the borane helix. Since there is no ligand 
to interact with, the "lone pair" states remain more or less localized. 
Finally, the overlap populations for type A, B, and C bonds are 
all negative: -0 .225,  -0 .353 ,  and -0 .231 .  

The isolobal analogy1' allows one to move from main group 
to transition-metal chemistry. Since O S ( C O ) ~  is isolobal to CH' 
or BH, we may anticipate that an OS(CO)~ tetrahedral chain also 
has a similar electronic structure. The carbonyls make this 
structure awfully crowded, so we did not check this by a calculation 

(16) (a) Buckminster Fuller, R. Synergefics; Macmillan: New York, 1975; 
pp 51 3-552. (b) The sculpture, "Triad", is by Ted Bieler. It stands in front 
of the Marathon Realty Building, University and Front Streets, Toronto. For 
a photograph of the work see: Lechtman, B. Photo Life ( C u d u )  1987, July, 
15. 

(17) (a) Hoffmann, R.  Angew. Chem. 19%2,94,725; Angew. Chem., Inr. 
Ed. Engl. 1982,21,711. (b) Mingos, D. M. P. Nurure (London) Phys. Sci. 
1972, 236, 99. (c) Forsyth, M. I.; Mingos, D. M. P. J.  Chem. Soc., Dulron 
Truns. 1977,610. (d) Evans, D. G.; Mingos, D. M. P. Organomerullics 1983, 
2, 435. (e) Mingos, D. M. P. Chem. Commun. 1983, 706. 



A Helical Face-Sharing Tetrahedron Chain 

but instead tried another metal chain. 
A PtL Tetrahedral Chain and Interconversions of Trigonal 
Prismatic and Face-Sharing Tetrahedral Structures 

Platinum shows a remarkable tendency to form triangulated 
chains of the [Pt3(CO),]:- type, n = 2, 3, 5, 6, lo.’* These 
contain a characteristic Pt3(C0)6 unit, 13. These triangles are 
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then stacked forming trigonal prisms, antiprissms, and helical 
structures. For instance the pentamer 14 forms an irregular helix 
in the solid state, the twist from top to bottom being 64’. 

Even two ligands per metal atom leads to steric troubles in the 
tetrahedral chain. So we were led to a PtL trial geometry, 
analogous to BH, but with Pt instead of B and CO instead of H. 

We also noted that it is possible to deform a perfect trigonal 
prismatic chain to the tetrahedral one by a continuous transfor- 
mation defined in 15. Each chain vertex gains two nearest 
neighbors in the course of this deformation. 

4 e =35.43 

IS  

It is instructive to study both the trigonal prismatic and the 
tetrahedral chain, because we know something about the former, 
and it gives us an alternative structure to compare. 

The electronic structure of the triangular (ACO), unit has been 
extensively studied.lg The d block consists of 15 orbitals (see 
16). Above these d orbitals is an orbital of ai’ symmetry, mainly 
of Pt s character. There are five degenerate sets in the d block, 
three of e’ and two of e” symmetry. The two e” sets, which are 

(18) (a) For a review of large metal clusters see: Chini, P. J .  Organomcf. 
Chem. 1980, 200, 37. (b) Calabrese. J.  C.; Dahl. L. F.; Cavalieri, A.; Chini, 
P.; Longoni, G.; Martinengo, S. J .  Am. Chem. Soc. 1974, 96, 2614. (c) 
Longoni, G.; Chini, P. J .  Am. Chem. Soc. 1976,98,7225. (d) For a recent 
review of platinum carbonyls see: Clark, H. C.; Jain, V. K. Coord. Chem. 
Reo. 1984, 55, 151. 

(19) (a) Cotton, F. A.; Haas, T. E. Inorg. Chem. 1964, 3, 10. (b) Wci, 
C. H.; Dahl, L. F. J.  Am. Chem. Soc. 1968, 90, 3960. (c) Ruff, J. K.; White, 
R. P., Jr.; Dahl, L. F. lbid. 1971, 93, 2159. (d) Lauher, J. W. lbid. 1978, 
100,5305. (e)  Dedieu, A.; Hoffmann, R. Ibid. 1978, 100.2074. (f) Schilling, 
B. E. R.; Hoffmann, R. Ibid. 1979,101,3456. (g) Evans, D. G.; Mingos, D. 
M. P. Organometallics 1983, 2,435. (h) Delley. B.; Manning, M. C.; Ellis, 
D. E.; Berkowitz, J.; Trogler, W. C. Inorg. Chem. 1982,21,2247. (i) Rives, 
A. B.; Xiao-Zeng. Y.; Fenske, R. F. Ibid. 1982,21,2286. (i) Pacchioni, G.; 
Fantucci, D.; Valenti, V. J .  Orgonomet. Chem. 1982,22489. (k) Fantucci, 
P.; Pacchioni, G.; Valenti, V. Inorg. Chem. 1984, 23, 247. (I) Chang, K. W.; 
Woolley, R. G.  J .  Phys. C: Solid Srare Phys. 1979, 12, 2745. (m) Bullett, 
D. W. Chem. Phys. Len. 1985, 115,450. (n) Mealli, C. J .  Am. Chem. Soc. 
1985,107,2245. (0) Underwood, D. J.; Hoffmann, R.; Tatsumi, K.; Naka- 
mura, A.; Yamamoto, Y. J .  Am. Chem. Soc. 1985, 107, 5968. 
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Figure 3. (a) Band structure and (b) COOP of a trigonal prismatic 
(PtCO), chain. 

antisymmetric with respect to the molecular plane, are combi- 
nations of xz and y z  orbitals. 

(PICO), Unit (PICO13 Chain 

b 16 0 

When the (PtCO), units are assembled to form the triangular 
chain, each orbital develops into a band, 16. The band structure, 
represented schematically by 16b, is shown in Figure 3. The 
intercell interaction rearranges the energy ordering. Away from 
the r point (k = 0, D3h symmetry), the symmetry plane per- 
pendicular to the chain is lost. a’, a” (and e’, e”) bands have 
avoided crossings.2i a’, e’, which are topologically equivalent to 
an s band, go up; a”, e”, equivalent to a pz (z is the chain axis) 
band, runs downwards. One would expect that the top of the d 
block is of Pt-Pt antibonding character and the bottom bonding. 
In reality, the bottom of the metal s,p band mixes in with the top 
of the d band, making it weakly antibonding or nonbondng. 

Also shown in Figure 6 are the COOP curveszo for the two types 
of Pt-Pt bonds. In the d block region the states are mostly Pt-Pt 
bonding except some around -13 eV. The ai’ band, which pen- 
etrates into the top of the d block, is also Pt-Pt bonding (see Figure 
3b). From the top of the ai’ band begin the CO A* states. Thus 
an optimal electron count corresponds to the filling of all the d 
states plus a fraction of the al’ band. This corresponds to a slightly 
negatively charged polymer. The overlap populations for the intra- 
and intercell Pt-Pt are shown in 17, for a neutral chain (60 
electrons per [PtCO],). The intracell bond remains stronger for 
electron counts 60-63 per [Pt(CO)],. (Counting 10 electrons from 
each CO. The valence electron count for the neutral fragment 
is 36, since each CO contributes 2.) - 0.160 

&o,55 

17 

(20) Some other applications of the COOP curves may be found in the 
following: (a) Wijeyesekera, S. D.; Hoffmann, R. Organomefallics 19843,  
949. (b) Kertesz, M.; Hoffmann, R. .f. Am. Chem. Soc. 1984,106,3453. (c) 
Saillard, J.-Y.; Hoffmann, R. J .  Am. Chem. Soc. 1984, 106, 2006. 
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chain is also more stable there for the neutral case. 
We might mention also that we studied an alternative twisting, 

now that of alternate Pt,(CO), units, thus moving from a trigonal 
prismatic to an octahedral geometry. The Pt-Pt distance was kept 
constant at  2.85 A. The purpose of this was to gain some con- 
fidence into the energetics of these angular deformations. Small 
twists (for instance an average of 16O in the pentamer'*) are known 
for the oligomers. The computations give a shallow minimum 
around I O o  twist from the trigonal prism. For a more detailed 
analysis of these fascinating structures the reader is referred to 
ref 190. 

MX Tetrahedral Chain 
A metal-centered face-sharing tetrahedral chain, 19, entails 

a very constrained geometry. The stoichiometry would be MX, 
and the bond length ratio M-M/M-X = 213 for a perfect tet- 
rahedron. For a rather short metal-metal separation of 2.4 A, 

monomeric trimeric 

Figure 4. The band structure of a tetrahedral face-sharing chain of 
PtCO, one formula unit per cell (left), folded back to a trimeric cell 
(right). 

0.2 I I I I 
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Figure 5. Overlap populations as a function of electron count for the 
tetrahedral PtCO chain. The three bond types are defined in 11. 

Since there is a topological relationship between the trigonal 
prismatic and the tetrahedral chain, one might expect a similarity 
between their band structures. To reveal that we have to take 
the computed band structure for the primitive helical cell of 
Pt(C0) and fold it back2' to a trimeric unit, [Pt(CO)],. This is 
done in Figure 4. The resemblance to Figure 3 may be seen; the 
lower symmetry of the tetrahedral chain breaks the degeneracy 
of the e bands, but otherwise many of the topological features of 
the triangular band structure are in tact. The overlap populations 
for a neutral chain, 18, indicate that the bond strengths are ap- 
proximately equal. The topological flexibility of the d orbitals 

,o 125 

0 I23 

18 

reduces the bond length difference (caused by the strain of the 
bond angles) that we saw for the borane case. However, away 
from the neutral chain, the difference in bond strengths becomes 
larger, as indicated by the overlap populations as a function of 
the electron count in Figure 5 .  

The total energy of the tetrahedron chain is lower than that 
of the triangular chain by an average of ~ 0 . 7  eV for 56-63 
electrons per (PtCO), unit. For neutral RCO the energy decreases 
monotonically with twist angle. Though we did not mention it 
earlier, we also studied a trigonal prismatic BH chain, to compare 
with the tetrahedral chain in the main group case. The tetrahedral 

(21) (a) Hoffmann, R. Angew. Chem. 1%7,99.871; Angew. Chem., fnt. 
Ed. Engt. 1987, 26,846. (b) Burdett, J.  K. Prog. Solid State Chem. 1984, 
IS. 173. 

19 

this would require an M-X distance of 3.6 A. This is too long, 
even for large ligands of the iodide type. Conversely a typical 
M-X distance of <3 A would require unacceptably short met- 
al-metal separations, shorter than the strong quadruply bonded 
record-short metal-metal bonds we have. 

How does one then achieve the "short runs" of face-shared 
tetrahedra that we saw in the copper iodides mentioned in the 
introduction? The tetrahedra distort, so as to allow longer 
metal-metal contacts, near 2.5 A for Cu(I)-Cu(I). Still another 
distortion occurs in the many structures that contain the "stella 
quadrangula" or "tetraederstern" building block, which we will 
discuss in the next section. 

While an undistorted infinite chain of metal-centered face- 
sharing tetrahedra is unlikely, let us nevertheless see what might 
be the optimum electron counts for realizing such a geometrical 
structure. We did calculations for two metal iodides, CUI and 
TaI. Iodide was chosen because of its large radius, Cu because 
the structures known contain that metal, and Ta because met- 
al-metal bonding is prevalent around its part of the periodic table. 

Figure 6 shows the COOP curves for CUI and TaI helices. The 
Cu-Cu and Ta-Ta distances are 2.2 and 2.4 A; thus, Cu-I and 
Ta-I are 3.3 and 3.6 A, respectively. For such short metal-metal 
and long metal-ligand distances, the electronic structure of the 
materials is dominated by metal-metal bonding. Thus the optimal 
electron count is such that the d band is a little more than half 
filled (a little more than half because the bottom of the s, p mixes 
with the d band). The COOP curves indicate that taking electrons 
out of CUI or adding electrons to TaI would stabilize the structure. 

The Flattened Stella Quadrangula or Tetraederstern Chain 
The tetracapped tetrahedron, 2Oa, sometimes called stella 

quadrangula or tetraederstern, is a lovely solid that cannot 
propagate in space. But a relatively small distortion of all tet- 

a b 
20 

rahedra results in a flattened DU unit, 20b, that readily stacks 
in one dimension. This structural unit is quite common, and its 
Occurrence in inorganic crystal chemistry has been nicely sum- 
marized by Anderson and co-workers.22 

The one-dimensional chain, 21, contains two nonequivalent 
tetrahedral centers, which we can call "i" (inner) and "0" (outer). 
Many patterns of filling of these tetrahedra can be thought of, 

(22) Nyman, H.; Anderson, S. Acta Crystallogr. 1979, A35, 580. 
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Figure 6. Crystal orbital overlap population (COOP) curves for CUI and Ta l  tetrahedral chains. 

and some have been realized. For instance, Klepp and co-workers 
recently synthesized a compound TICu3Te2, 22, which contains 

21 

0 Te 

cu 

22 

TICulTez 

a linear chain. The building bricks of the chain are the CuTe, 
tetrahedrons. The stella quadrangula of Te are alternately filled 
only in the center tetrahedron and in all the outer ones. The 
shortest Cu-Cu and Cu-Te contacts are 2.47 and 2.59 A, re- 
s p e c t i ~ e l y . ~ ~  

Since there is no short Te-Te contact in this structure (all 
Te-Te > 3.95 A), the formal electron count is T I + C U ~ ~ + T ~ ~ ~ - ,  
giving a d t0  Cu(1) configuration. The world's record short Cu- 
(I)-Cu(I) distance is 2.35 k which is observed in the linear C u t +  
chain of a [Cu(t~lyl-NNNNN-tolyl]~ comple~.~ '  

The simple flattening 23, which changes the tetrahedral angle 
a from 1 09S0 to 155.8' while maintaining the M-X distance, 

23 
will give a distance ratio Mi-Mo/Mi-M,'/M-X/Mo-Mo/X-X 
= I/d2/(3/2)/2d(2/3)/3d(2/3) = 1/1.4/1.5/1.6/2.4. The 
distance between the inner and outer M sites, Mi-M,, is that 
between the centers of two face-sharing tetrahedra. It is very short 
compared to the next short Mi-M,' contact (between the inner 
M site and the outer M side in another stella quadrangula stacked 
above or below). Thus there is a geometric constraint preventing 
both Mi and M, sites in the same stella quadrangula from being 
filled simultaneously. The distance Mo-M,' between the outer 
sites of two stacked stella quadragulae is also very short, since 
it is between the centers of two face-sharing flattened tetrahedra. 
Unless there is some distortion from the ideal tetrahedral ar- 
rangement, the filling of outer sites in two stacked stella quad- 
rangula is unlikely. In Klepp's structure, T1CusTe2, the metal 
tetrahedron formed by the four Cu atoms at the four outer sites 
shrinks relative to the Te tetrahedra (Cu-Cu = 2.37 - 2.87 A, 
Cu-Te = 2.59 - 2.77 A, whereas the ideal Cu-Cu/Cu-Te is 
1.61 1.5, Le. Cu-Cu is longer than Cu-Te). But each edge of the 

(23) Klepp, K. 0. J .  Loss-Common Met. 1987, 128, 79. 
(24) Beck, J.; Striihle, J. Angew. Chem., In?. Ed. Engl. 1985, 24, 409. 
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Figure 7. Density of states (left) and COOP (right) curves for the stella 
quadrangula chain, CuTe,, in  which only the outer sites of every other 
stella quadrangula are filled. 

Table I. Extended-Huckel Parameters 

B 2s -15.2 1.3 
2p -8.5 1.3 

C 2s -21.4 1.625 
2p -I 1.4 1.625 

0 2s -32.3 2.275 
2p -14.8 2.215 

S 3s -20.0 1.82 
3p -13.3 1.82 

5p -14.8 2.16 
Pt'% 6s -10.75 2.55 

6p -5.27 2.55 
5d -13.16 6.01 2.696 0.6332 0.5512 

CU 4s -11.40 2.20 
4p -6.06 2.20 
3d -14.00 5.95 2.30 0.5933 0.5744 

Te 5s -20.78 2.51 

a Exponents and coefficients in a double-r expansion of the d orbit- 
als. 

metal tetrahedron shrinks differently, as shown in 24 for one of 
the tetrahedra (there are two nonequivalent ones in T1Cu3Te2). 
The top and bottom edges are longer than the side ones. Let us 
analyze this with our band structure calculation. 



3190 J .  Am. Chem. SOC., Vol. 112, No. 10, 1990 

- 

Zheng et al. 

7 ;'. 
I 

I 
> 

all inner and outer 
sites filled 

5 

- Cu-Te 
-6  --- cu-cu 

-81 'i :, 
-10 

- ' * ] f i l l e d  all outer sites 

- 2 0  

- antibonding bonding- - antibonding bonding- 
COOP COO? 

Q b 
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Figure 7 is the DOS and the COOP curve for two representative 
Cu-Te and Cu-Cu bonds in the one-dimensional stella quad- 
rangula chain (only the outer sites of every other s.q. are filled). 
Other nonequivalent Cu-Te and Cu-Cu bonds have similar 
features. In the calculation the Te tetrahedron edge (before the 
flattening 23) is 4.5 A, and the Cu tetrahedron is shrunk so that 
Cu-Cu = 2.6 A and Cu-Te = 2.68 A. 25 is a schematic inter- 

m/= 
M L\M/L LvL / '$, 1 '\ti L 'L 

25 

action diagram. The Te(L) s,p blocks are stabilized by Cu(M) 
d orbitals, the Cu s,p block is pushed up. The Cu d levels are 
less affected since the destabilization from the orbitals below them 
is more or less compensated by the orbitals above. From inter- 
action diagram 25, we can easily understand Figure 7. There 
should be Cu-Te bonding (or nonbonding) in the Cu d and Te 
p blocks. But the bottom of the Cu d band should be Cu-Cu 
bonding and the top Cu-Cu weakly antibonding due to the mixing 
of Cu s,p with the filled d band, such as that shown in 26. The 
overall Cu-Cu interaction will become attractive, as is the case 
in many aggregated Cu(1) clusters. 

26 

The computed overlap populations for the two nonequivalent 
Cu-Cu contacts in the stella quadrangula chain (only the outer 
sites of every other stella quadrangula are filled) are shown in 
27. Indeed, the positive values indicate attractive Cu-Cu inter- 
actions. As we mentioned before, all Cu-Cu distances in this metal 

f " O3 
-004 

27 

tetrahedron are 2.6 A. The relative overlap populations are in- 
dicative of the observed bond strength in the actual structure; the 
top and bottom edges are longer than the side edges (see 24). 

The differential in the overlap population is partially a con- 
sequence of the flattening of the stella quadrangula 23. Four Te 
atoms at the stella quadrangula comers are aligned closer in height 
to the Cu atoms (see 28). Thus orbital n in 26, which is slightly 

28 

Cu-Cu antibonding, interacts with Te because it points toward 
the ligands. This is shown in 29. 

29 

The stabilizing interaction 29 pulls more n states (see 28) down 
below the Fermi level. Unlike the discrete molecular case, some 
n states here are above the Fermi level and unfilled because of 
the band dispersion. The net result is a weakening of the top and 
bottom edge of the metal tetrahedron. If we decrease the in- 
teraction between the four Te atoms and the Cu's by changing 
the Slater orbital exponent of Te from 2.5 and 2.16 to 3.0, the 
overlap population will become more or less equal (0.033 vs 0.032). 
The electron density in Cu px, which is a constituent of orbital 
n, will decrease from 0.17 to 0.10, because less n states are pulled 
down below the Fermi level. 

When the outer and inner sites are alternately filled, another 
kind of Cu,-Cui bond is formed. It is from the outer Cu to the 
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inner Cu in an adjacent stella quadrangula and has the same bond 
length as that within the metal tetrahedron. The calculated overlap 
populations are shown in 30. The difference between the top and 
side bond strengths in the metal tetrahedron is increased. It is 
because more bonding states for the top edge are pushed up by 
interactions such as 31. The bonding u orbital in 26 has its 

c- 0.026 & 0.030 0.043 

'. 
30 31 

c- 0.026 & 0.030 0.043 

'. 
30 31 

electron density localized at the center of the bond, thus it interacts 
better with the Cu, atom than other antibonding orbitals such as 
n. 

We have performed calculations on the stella quadrangula chain 
in which all inner sites or all outer sites are filled. When only 
all inner sites are filled, there are not enough M-X bonds to hold 
the structure from collapsing. If all outer sites are filled, there 
is the crowding effect between the metal atoms between adjacent 
stella quadrangula which gives unreasonably large negative overlap 
population values. The structure seems to be best filled alter- 
natively, unless it expands to relieve the crowding effect. Figure 
8 shows the COOP curves for the expanded structure, in which 
the shortest Cu-Cu and Cu-Te contacts are around 2.6 and 2.7 
A, respectively. Here again, the mixing of the Cu s,p band into 
the d band has reduced the antibonding feature a t  the top of the 
d band. Thus high occupancy of the d band is possible, even for 
an expanded structure with all outer or all inner and outer sites 
filled. 

In this paper we have fleshed out the beautiful, seductive ge- 
ometry of a spiral chain of face-sharing tetrahedra, by adducing 
several molecular realizations. The optimal electron counts for 

these hypothetical one-dimensional arrays are computed. 
Still another, even more speculative potentiality for realizing 

the tetrahedral chain is to have each tetrahedron centered by a 
water molecule, with hydrogen bonds piercing the shared tetra- 
hedral faces. Such a helical (HzO), chain would contain alter- 
nating nonequivalent water molecules, the chain formed by their 
0-H bonds and lone pairs. Stacking of such structures could lead 
to geometries related to the clathrates and gas hydrates.25 
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Appendix 

The extended-Huckel methodz6 was used in the calculations. 
The Bloch sum in the helical structure is xRBk*RTRC$ir where C$t 
is the atomic wave function in the unit cell, TR is the transla- 
tion-rotation operator, and k is the Bloch wave vector. The 
summation is over all cells. The energies and overlap populations 
are calculated with IOOK points along the one-dimensional re- 
ciprocal space. 

B-H = 1.28 
A, B-B = 1.80 Pt-Pt = 2.85 A, Pt-C = 2.1 f, C-O = 1.16 

The extended-Huckel parameters are listed in Table I.  

The interatomic distances used are the followin 

(25) These Frank-Kasper structures with rare gas atoms at  the vertices 
are reviewed by: Berecz, E.; Balla-Achs, A. Gus Hydrates; Elsevier: Am- 
sterdam, 1983. 

(26) Hoffmann, R. J. Chem. Phys. 1963,39, 1397. Hoffmann, R.; Lip- 
scomb, W. N. Ibid. 1962, 36, 2179; 37, 2872. Ammeter, J. H.; Biirgi, H.-B.; 
Thibeault, J. C.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 3686. 
Whangbo, M.-H.; Hoffmann, R.; Woodward, R. B. Proc. R. Soc. London 
1979, A366, 23. 

(27) Lipscomb, W. N. Boron Hydrides; Benjamin: New York, 1963. 
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Abstract: Several simple rules have been derived, providing new insight into the role of point symmetry in controlling the 
energetic stability of molecules and excited-state species. General symmetry conditions have been found that interrelate the 
ground-state and electronic excited-state energy minima, transition structures and other stationary nuclear arrangements of 
neutral molecules and ions, and excimers and exciplexes. By testing the point symmetry of a family of nuclear arrangements, 
one can predict the existence of stationary nuclear configurations within domains of a whole series of ground- and excited-state 
potential energy surfaces. The catchment region point symmetry theorem and various vertical symmetry theorems provide 
new tools for the analysis of potential surfaces and a rational strategy for the search for stationary points. The applications 
of the theorems are illustrated by examples. 

The usual question asked when studying molecular symmetry 
problems is the following: what is the point symmetry group of 
some specified nuclear configuration? If the point symmetry is 
determined, then various conclusions can be drawn concerning 
the properties of the specified molecular species.'" 

In this study we shall view the problem from a different per- 
spective and ask different questions: if all possible configurations 
of a collection of atoms is considered, then which are those con- 
figurations that have a specified symmetry? What predictions 
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