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The structures of black phosphorus (orthorhombic), As, Sb,
and Bi (rhombohedral) have been traditionally interpreted as
resulting from a Peierls distortion from an ideal simple cubic
structure. We examine this idea in detail by calculating the
Fermi surfaces of simple cubic phosphorus with the extended
HuK ckel tight-binding method and by looking at some simpler
models to understand the trends. The calculated Fermi surfaces
for cubic P are not nested, which argues strongly that the
structural distortion in black phosphorus has little to do with
Peierls instability. Within the (simple) HuK ckel approximation
for p-orbital interactions, the Fermi surface nesting is still per-
fect, even when interchain (p-type) interactions are included.
Next-nearest-neighbor interaction and s+p mixing completely
destroy the Fermi surface nesting. The observed strong s+p
mixing implies that it is just this mixing that causes the deforma-
tion to the highly stable black phosphorus structure, forming lone
pairs in the process. We suggest that in order to understand the
trend in the magnitude of distortions in the structures of the
group 15 elements (P'As'Sb'Bi) s+p mixing should not be
neglected even in the heavier elements. ( 1999 Academic Press

Key Words: group 15 elements; band structure calculations;
structural distortions; s+p mixing; Peierls distortion; Fermi sur-
face nesting.

INTRODUCTION

One-dimensional (1D) solids with partially "lled bands
have an innate tendency to lower their electronic energy by
opening a band gap at the Fermi level (1}3); the band gap
opening leads to structural modulation, which is referred to
as a charge density wave (CDW) (4}9). This electronic
instability is called a &&CDW instability'' or &&Peierls instabil-
ity.'' The e!ect is analogous to the "rst-order Jahn}Teller
instability of a molecule, i.e., the tendency of a molecule with
partially "lled degenerate HOMO's to undergo a sym-
metry-lowering distortion which splits the degenerate level
into the "lled and empty ones, opening an energy gap
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between the two (5, 6). The structural distortion driven by
the Peierls instability is called a &&Peierls distortion'' (5, 6,
10), analogous to a Jahn}Teller distortion (11).

Peierls instabilities are often discussed in terms of Fermi
surface nesting (4}6). It is the nested portion of the Fermi
surfaces that is responsible for the distortion and disappears
after the distortion. The nesting vector q is directly related
to the unit cell length of the modulated structure. It has been
proven that the metals with isotropic Fermi surfaces (such
as a Fermi sphere) cannot have a Peierls instability (8).
Thus, the topology of Fermi surface is important in studying
CDW materials. Indeed, Fermi surface calculations have
proven indispensable in the "eld (4}9).

A CDW phenomenon also occurs in certain two-dimen-
sional metals, although their Fermi surface seems to exhibit
no nesting. This led to the development of the concept of
hidden Fermi surface nesting: the combined Fermi surfaces
of such a system are decomposed into a set of hidden 1D
Fermi surfaces, and the nesting associated with the hidden
surfaces is responsible for the observed geometrical distor-
tions (5, 6).

The structural modulation in materials driven by the
Peierls instability is accompanied by a metal-to-semicon-
ductor or metal-to-insulator transition (5, 7}9, 12). This is
due to the fact that the modulation diminishes the density of
state (DOS) at the Fermi level (13). The resultant structural
distortion is thus clearly distinguishable from other defor-
mations in terms of both its origin (Fermi surface nesting)
and the anomalous changes in the physical properties.
Sometimes, the structural modulation of a metal can orig-
inate from the lowering of the energy levels lying well below
the Fermi level. The situation is then analogous to a mol-
ecule with no partially "lled degenerate HOMO's, yet which
can nevertheless undergo a symmetry-lowering distortion,
a phenomenon typically described as a second-order Jahn}
Teller instability (2). This distortion may (or may not) in-
duce a band gap opening. It has been noted that this type of
modulation should not be considered as a Peierls distortion
in a strict sense (14).

Black phosphorus, As, Sb, and Bi, have layered structures
in which each atom has three short bonds in the layer and
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relatively long contacts with the atoms in the neighboring
layer (15, 16). Black phosphorus has an orthorhombic (A17)
structure (Fig. 1) and is semiconducting, while the semi-
metals, As, Sb, and Bi, possess a rhombohedral (A7) struc-
ture (Fig. 2). Though highly distorted, in distinct ways, both
structures are related to a simple cubic structure, as shown
schematically in Fig. 3. Going down group 15, the distances
between adjacent atoms within a layer and between layers
di!er less, so that the coordination environment surround-
ing an atom deviates less from a regular octahedron.
A &&weaker'' structural instability as we go down the group is
implied. This can be seen also in studies of these materials
under high pressure; black phosphorus is found to trans-
form (reversibly) to a simple cubic structure at much higher
pressure (&12 GPa) than the pressure (&5 GPa) at which
As does (17). Both elements are metallic in their simple cubic
form (15, 16, 18).

The idea of Peierls distortion has been employed to
explain the structural trends in the group 15 elements (10,
19}23). Both A7 and A17 structural types can be derived
from a simple cubic lattice by breaking three linkages and
keeping the other three around each site (see Fig. 3). For the
simple cubic phases of As, Sb, and Bi, Cohen et al. argued
that the electronic con"guration responsible for bonding is
p3, which gives rise to three p bonds at right angles and
octahedral coordination (24). This is due to the fact that the
s electrons, lying deeper, tend to participate much less in the
chemical bonding in heavy elements (25). Littlewood ex-
plained the A7 structure of As, Sb, and Bi as a consequence
of the Peierls instability inherent in a simple cubic phase
with half-"lled p bands (19, 20). In addition, he considered
s}p mixing to be more important in forming the A17 struc-
ture of black phosphorus.
FIG. 1. The black phosphorus (A17) structure (a) in a perspective view an
the lower layer are "lled. The P}P distances are given in A_ (Ref. (15a)).
A more detailed analysis of these systems (using band
concepts) was carried out by Burdett and Lee (10). They
considered for simplicity only the p-type p-orbital (pp) inter-
action within the HuK ckel approximation, and showed that
the structures of black phosphorus, As, Sb, and Bi can be
derived by Peierls distortion from the ideal simple cubic
structure. With the p3 electron con"guration, all the group
15 elements possess three independent half-"lled p bands,
each from one of three orthogonal p orbitals, that is, p

x
,

p
y

and p
z
. By analogy with the 1D case, we should expect

a distortion away from simple cubic by "ssion of alternate
linkages along x, y, and z directions.

As Burdett and Lee already noted in their paper, how-
ever, the simple idea described above is not of much use in
tracing the origin of the structural distortion. When the s}p
mixing is strong, the s2p3 electron con"guration of the
group 15 elements results in a three-coordinate solid with
a lone pair occupying one coordination position. This also
can explain the structural distortions in the group 15 ele-
ments. The s}p mixing is a local e!ect and is not obviously
related to bands, or, the Peierls instability. Gaspard et al.'s
recent work on amorphous and liquid phases of the group
15 elements also shows that the long-range order of the
materials does not play a role in the bonding mechanism
(26).

We thought it important to examine systematically the
origin of structural distortions in the group 15 elements. As
a representative example we choose the simple cubic
P structure. We begin our analysis with reconsidering Bur-
dett and Lee's argument in terms of the Fermi surface
nesting. Next, we show how this simple picture gradually
changes and becomes complicated when additional interac-
tions are included. Finally, we calculate its Fermi surfaces
d (b) in a projection on ac plane. In the projection, the circles of P atoms in



FIG. 2. The As (A7) structure (a) in a perspective view and (b) in a projection along a#b#c direction. In the projection, the circles of As atoms in the
lower layer are "lled. The top atoms in the upper layer overlap perfectly with the bottom atoms in the lower layer. The As}As distances are given in A_
(Ref. (15b)).
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employing the extended HuK ckel tight-binding method (27,
28). All the calculations were carried out using the CAESAR
program (29). The unit-cell length of the simple cubic
P structure is chosen to be 2.38 A_ from the literature (16,
18a). A weighted H

*+
formula was used for the extended

HuK ckel calculations, and for all the calculations the follow-
ing atomic parameters were employed (H

**
"orbital energy,

f"Slater exponent): P3s, !18.9 eV, 1.881; 3p, !10.6 eV,
1.629 (30).

pr INTERACTION WITHIN THE HUG CKEL
APPROXIMATION

We begin with a HuK ckel model analysis, and p}p p inter-
actions only. In a simple cubic cell 1a
Scheme 1

Scheme 2
with a unit cell length a, the three orthogonal p-orbitals, p
x
,

p
y
, and p

z
, generate bands with energies (10),

p
x
, e(k)"a#2bp cos k

x
a

p
y
, e(k)"a#2bp cosk

y
a

p
z
, e(k)"a#2bp cos k

z
a,

where a and bp ('0) are the Coulomb and p}p p resonance
integrals, and k is a three-dimensional wave vector, kx#ky

#kz or (k
x
/a*, k

y
/b*, k

z
/c*) (Fig. 4). The k's are in the range

of !p/a(k
x
, k

y
, k

z
4p/a. This "rst Brillouin zone (FBZ) is

drawn in Scheme 1b. For the p3 con"guration, all the three
bands are half-"lled. The Fermi level e(k

F
)"a cuts halfway

through all the dispersion curves connecting two special
k points in Fig. 4.

A Fermi surface is de"ned as a collection of the Fermi
vectors, k

F
's, in the FBZ. In Scheme 2a,
the 1D Fermi surface arising from the p
x
band is then given

by two parallel planes, i.e., ($0.25, y, z), perpendicular to
the line !PX. The Fermi surface divides the FBZ into
three regions; the middle region is empty of electrons while
the other two are occupied. We can see that the Fermi
surface is perfectly nested with a nesting vector qa"0.5a*.



FIG. 3. Schematic diagrams of (a) black phosphorus and (b) As structures displaying their relation to a simple cubic structure. Solid and broken lines
denote intra- and interlayer atom distances, respectively. (adapted from Ref. (10).
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This Fermi surface nesting will be responsible for the "ssion
of alternate linkages along the x direction. Likewise, the
p
y

and p
z

bands give rise to perfectly nested 1D Fermi
surfaces with nesting vectors qb"0.5b* and qc"0.5c*, re-
spectively (Schemes 2b and 2c). The same type of bond
alternation as along x should occur also along y and z. The
combined Fermi surfaces of 2a to 2c are shown in Scheme 3.
Scheme 3
The combined Fermi surfaces 3 can be divided in a di!erent
way, regardless of the origin of each set of the Fermi surfa-
ces. This (hidden Fermi surface nesting) idea is based upon
assignment of the bands, not by their origin in p

x
, p

y
, p

z
but

in order of energy at each k point (Fig. 4). So, the band with
the lowest energy is labeled with 1, and the highest one with
3. In the FBZ, band 1, the lowest band, is all occupied except
around !, resulting in a cube-shaped hole pocket centered at
! (4a).
Scheme 4 FIG. 4. Schematic dispersion relations of the bands of a simple cubic
structure with p orbitals, considering the pp interaction within the HuK ckel
approximation. The dashed line refers to a Fermi level with a p3 electron
con"guration. !"(0, 0, 0), X"(0.5, 0, 0), M"(0.5, 0.5, 0), and R"(0.5,
0.5, 0.5).
On the other hand, an electron pocket of the same shape is
formed around R (4c) from the highest, mostly unoccupied
band 3. A cross made of three perpendicular squared pipes
is centered at !, originating from band 2 (4b). The outside of
the cross is occupied by electrons. It can be easily seen that
the combination of 4a to c gives rise to 3, i.e., the combina-
tion of the three pairs of 1D Fermi surfaces (2a to c). The
edges and corners of 4a to c correspond to the k point sets
shared by two and three of these 1D Fermi surfaces, respec-
tively. This implies that at the k points on those edges and
corners the bands are doubly and triply degenerate, respec-
tively. As we shall see later, these degeneracies can be lifted
easily by some additional interactions. In that case, the
Fermi surfaces of 4a to c may not share their edges or
corners any longer, and their combination does not produce
perfect 1D Fermi surfaces but shows fragmentation of them.
In other words, the additional interactions may cause the
p
x
, p

y
, and p

z
orbitals to mix together, destroying the inde-

pendent well-nested 1D nature of the p
x
, p

y
, and p

z
bands.



FIG. 5. Dispersion relations of the bands of the simple cubic P struc-
ture, calculated only with p orbitals and considering the pp and pn interac-
tions within the HuK ckel approximation. The calculated bp and bn are 6.02
and !2.16 eV, respectively. The dashed line refers to a Fermi level for
a p3 electron con"guration.

Scheme 5
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pr AND pp INTERACTIONS WITHIN THE HUG CKEL
APPROXIMATION

If p}p p interactions are included, the energy dispersion
relations become

p
x
, e(k)"a#2bp cos k

x
a#2bn cos k

y
a#2bn cos k

z
a

p
y
, e(k)"a#2bn cos k

x
a#2bp cos k

y
a#2bn cos k

z
a

p
z
, e(k)"a#2bn cos k

x
a#2bn cos k

y
a#2bp cos k

z
a

where bn ((0; D bn D(D bp D) is the p}p p resonance integral.
We need an estimate of bp and bn; these were obtained by
calculating the overlap integrals between p orbitals of the
nearest neighbors and using the Wolfsberg}Helmholz for-
mula (27). In this way we obtain bp"6.02 eV, bn"
!2.16 eV. The resulting band structure is presented in
Fig. 5; with the Fermi level a"!10.6 eV. The additional
p

p
interaction actually changes the band structure quite

a lot. The three crystal orbitals degenerate at ! are stabil-
ized due to their p bonding character. The previously non-
dispersive curves in Fig. 4 now run up as p antibonding
increases when k departs from !. The crystal orbitals at
R have the most p antibonding character. In Fig. 5, the
k points cut by the Fermi-level are not always halfway
between two special k points, implying that the Fermi
surfaces are no longer perfectly #at.

The Fermi surfaces associated with these bands are pre-
sented in Fig. 6a as cross-sections in the planes k

z
"0 and

0.5c* and in Fig. 6b as a perspective stereoview. As expected
from the band structure in Fig. 5, the Fermi surface from
each band consists of two strongly wraped sheets perpen-
dicular to the sheets from the other two bands. Although
their shapes deviate signi"cantly from the perfect 1D Fermi
surfaces, the following simple mathematical reasoning re-
veals that perfect nesting still occurs between each pair of
these quasi 1D Fermi surfaces, through a common nesting
vector, q"0.5a*#0.5b*#0.5c*. Consider, for example,
the p

x
band and its Fermi surfaces. At any k

F
on this Fermi

surface, 2bp cos k
x
a#2bn cos k

y
a#2bn cos k

z
a will be 0,

since e(k
F
)"a. For this k

F
to be nested by q, there should

exist a corresponding Fermi vector, k
F
#q. This condition

is satis"ed owing to the fact that 2bp cos(k
x
a#p)#

2bn cos(k
y
a#p)#2bn cos(k

z
a#p)"! (2bp cos k

x
a#

2bn cos k
y
a#2bn cos k

z
a)"0. The same logic holds for the

p
y
and p

z
bands as well.

The perfect Fermi surface nesting found in Fig. 6 indicates
that the Peierls instability should occur, even when inter-
chain (p

p
) interactions exist. The observed common nesting

vector, q"0.5a*#0.5b*#0.5c*, implies that unit-cell
doubling should occur along all three directions simulta-
neously. However, the actual magnitude of the distortion is
expected to be smaller than in the absence of interchain
interactions. This is because the driving force for the Peierls
instability is weakened when the nested k

F
's are located
away from the halfway point along the direction of the
distortion in the FBZ. A simple example illustrating this is
a pair of hypothetical linear hydrogen chains along the
a direction, interacting perpendicular to each other (31). As
interchain interactions become stronger, the Fermi vectors
lie farther from $0.25a*, thereby leading to a weaker
Peierls instability (31c).

EXTENDED HUG CKEL CALCULATION ONLY
WITH p ORBITALS

As one moves from simple to extended HuK ckel calcu-
lations, inclusion of overlap integrals destabilizes the anti-
bonding part of a band. In comparison with Fig. 5, the
upper (antibonding) part of the bands in Fig. 7 is much
raised, so that the Fermi level lies nearer the bottom of the
bands. Long-range (especially, next-nearest-neighbor) inter-
actions lift the degeneracy at the low-symmetry k points
along !PM and !PR. Along !PM, the low symmetry
allows a mixing between the p

x
and p

y
orbitals, generating

two bands, each from a linear combination &p
x
#p

y
or

&p
x
!p

y
. Schemes 5a and 5b depict (in projection) the

linear combinations at ! and M resulting from the p
9
#p

y
and p !p bands, respectively (32).
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At ! or M, they have the same energies, being equivalent
in p- and p-type interactions along the face-diagonal direc-
tions. The p-type interaction destabilizes these crystal or-
bitals both at ! and M, while the opposite holds for the
p-type interaction. This degeneracy no longer holds at
k points between ! and M. On going away from ! or M, the
p antibonding turns into bonding, while the p bonding turns
into antibonding. Clearly the p

x
#p

y
band will change in

energy more than the p
x
!p

y
band along this line, due to

its p-type interaction along the a#b direction. At the
halfway point, (0.25, 0.25, 0), the interactions are maximized,
resulting in the largest energy di!erence between the two
bands.

The same e!ect is responsible for the degeneracy lifting
along !PR. The symmetry imposed at the k points along
!PR allows the three p orbitals to participate equivalently
in the face-diagonal interactions along a#b, b#c, and
c#a. Thus, there is a linear combination, &p

x
#p

y
#p

z
,

pointing along a#b#c, a body-diagonal direction. The
other two linear combinations are orthogonal to it. The
linear combination p

x
#p

y
#p

z
at ! and R is shown in

Scheme 6.
Scheme 6
The orbitals at the next-nearest-neighbor sites interact
with each other in an antibonding manner. As in the case of
!PM, the character of the interaction changes and be-
comes more bonding on going away from ! or R. At
halfway points, the energy splitting is larger along !PR
than along !PM. This is expected, since the former direc-
tion allows more orbitals to interact than the latter does.

The band splitting described above actually occurs
throughout the entire FBZ. This is important, because the
bands involved here are the ones cut by the Fermi level. We
expect large changes in the shapes of the Fermi surfaces due
to the band splitting. The Fermi surfaces associated with
these bands are presented in Fig. 8a as cross-sections in the
planes of k

z
"0 and 0.5c* and in Fig. 8b in a perspective

stereoview. The overall features of these surfaces may be
analyzed by thinking about their connection to the simpli"-
ed Fermi surfaces, 4a to 4c. The hole pocket from the lowest
band gives a Fermi surface in shape of a rounded cube
centered at !. The second Fermi surface has the shape of
a cross made of three perpendicular square-like cylinders.
The highest band leads to an electron pocket in the shape of
a small rounded cube and centered at R with eight spikes at
the corners. The spikes point toward ! and connect this
third Fermi surface to the cross.

Clearly these Fermi surfaces are not well nested, and at
best the nesting appears only between the walls facing each
other in the cross. Comparing to the Fermi surfaces of 4a to
4c, we may conclude that the nesting does not occur here
because the two cubes are too small to align their faces with
the walls of the cross in Fig. 8. It is the band-splitting that
makes these cubes diminish. In turn, the band-splitting
results from the long-range interactions between the p or-
bitals.

BAND STRUCTURE OF SIMPLE CUBIC P

Figure 9 shows the dispersion relations of a simple cubic
phosphorus structure, calculated with the extended HuK ckel
tight-binding method. Now s orbitals are included. Overall,
the main features of the band structure are in good agree-
ment with those from other calculations (23). The composi-
tions of the crystal orbitals at the special k points are also
given in Fig. 9. The lowest band has mainly s character,
except around M and R. The s orbitals interact su$ciently
strongly, so that the s band actually overlaps with the
high-lying p bands. At the low-symmetry k points, the s and
p orbitals mix together.

The interaction between s and p bands has a dramatic
e!ect on the band structure near R. At R the crystal orbital
of s character is most destabilized, as a consequence of
antibonding along all three unit-cell vector directions. The
corresponding crystal orbitals of p character are, however,
stabilized by p}p p bonding. Thus, the highest p band
changes its orbital character to s on going from M or ! to R.
The band crossing between the s and p bands is avoided, due
to the low symmetry of the k points in between. This results
in strong band repulsion, especially along !PR. Crystal
orbitals of the s band interact with those of the p

x
#p

y
and

p
x
#p

:
#p

z
linear combinations along ! PM and ! PR,

respectively. Note that this has nothing to do with long-
range interactions. The s}p mixing occurs largely through
the nearest-neighbor s}p interactions along each unit-cell
vector direction. In the symmetry that is present along
!PR, the s orbitals undulate in the same way along a, b,
and c directions. Only the p

x
#p

y
#p

z
linear combination

has the same symmetry for the interaction. Likewise, it is the
p
x
#p

y
linear combination that matches the s combination

along !PM.
The s}p mixing we observe is important, because the band

repulsion resulting from it changes the highest band signi"-
cantly. This band is always kept above the Fermi level, and
is now no longer cut by the Fermi level. We expect only two
sets of Fermi surfaces from the band structure. For the two
lower p bands, the s}p mixing may not a!ect their Fermi
surfaces as signi"cantly as in the case of the highest band.
However, it should be noted that now the "lled region of



FIG. 6. The Fermi surfaces from the band structure of Fig. 5 in (a) cross-section views on the planes of k
z
"0 and 0.5c* and in (b) a perspective

stereoview. >"(0, 0.5, 0), Z"(0, 0, 0.5), X@"(0.5, 0, 0.5), and >@"(0, 0.5, 0.5).
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those p bands has a large antibonding contribution from the
s}p interactions. This is re#ected in the raised Fermi level in
Fig. 9, compared to that in Fig. 7.

The Fermi surfaces associated with these bands are pre-
sented in Fig. 10a as cross-sections in the planes of k

z
"0

and 0.5c*, and in Fig. 10b as a perspective stereoview. They
are in good agreement with those calculated by other
methods (23). As expected, there occur only two Fermi
surfaces in Fig. 10. A sphere-like hole pocket centered at ! is
from the second energy curve in Fig. 10, while the third
energy curve creates a cross of three nearly circular pipes.
The size of the cross is larger and its shape is more regular in
our calculation than in other work (23). This di!erence may
be mainly due to the slightly exaggerated s orbital interac-
tions in our calculation. The two Fermi surfaces merge
together at eight points located along the body-diagonal
directions. The small electron pocket in Fig. 8 now disap-
pears.

It is clear that the Fermi surface nesting does not occur in
this structure. Thus, the Peierls instability is not inherent in
the electronic structure of simple cubic P. It is interesting to
notice that the shapes of the Fermi surfaces in Fig. 10
are quite similar to those of ReO

3
, a transition metal

oxide with a perovskite-type lattice. With a 5d1 electronic



FIG. 7. Dispersion relations of the bands of the simple cubic P struc-
ture calculated with only p orbitals within the extended HuK ckel approxima-
tion. The dashed line refers to a Fermi level for a p3 electron con"guration.

Scheme 7
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con"guration, the Fermi level lies near the bottom of the
t
2'

-block bands of ReO
3

(33). Its Fermi surfaces consist of
two spheres of electron pockets centered at ! and outside of
these a cross of three perpendicular circular pipes. ReO

3
is

a normal metal and does not exhibit any structural phase
transition or electrical anomaly in the temperature region
studied experimentally (34).

From the absence of Fermi surface nesting found in our
calculations, we conclude that the phosphorus structure*
either A17 or A7 under intermediate pressure*should not
be considered as a structure distorted from a simple cubic
lattice as a consequence of a Peierls instability. Instead, we
suggest that the origin of the distortion is the s}p mixing,
a more local e!ect.

To understand the e!ect of s}p mixing on the phosphorus
structure, we might "rst consider a simpler example. It is
well known that strong s}p mixing is responsible for the
tetrahedral geometry in group 14 elements such as C, Si, and
Ge (35). Given one more electron at each site, their four-
coordinate environment cannot be suitable for P, since the
extra electron would then enter the high-lying p* antibond-
ing bands. A more stable (isoelectronic) structure can be
generated by cutting one bond around each site. A p* band
of the original tetrahedrally bonded lattice is then lowered,
becomes nonbonding, and accommodates the extra electron
to produce a lone pair at each site. Thus, given the existence
of strong s}p mixing and this electron count, lone pair
formation is essential for a stable structure, and each site is
three-coordinate.

Something similar may occur in simple cubic P on trans-
forming to an A7 structure as the applied pressure de-
creases. In its simple cubic form, the "lled part of the
p bands is antibonding between s and p orbitals. By break-
ing bonds and forming a lone pair at each site, this anti-
bonding component is diminished in the "lled bands. The
resultant symmetry lowering allows the s and p orbitals to
mix more e!ectively. Thus, the bonding character in the
"lled part of the bands becomes enhanced, and the P}P
bond distance in the layer decreases signi"cantly. Mean-
while, the un"lled part of the p bands is strongly destabilized
by the enhanced antibonding and is pushed above the Fermi
level (36) (Scheme 7).
However, the A7 structure does not seem to provide
su$cient room to accommodate the newly formed lone
pairs of phosphorus. A band gap between nonbonding and
antibonding bands still does not open, and the system is
semimetallic. Under lower pressure, phosphorus takes on an
A17 structure, whose density is lower than that of the A7
(37). The band gap "nally opens, resulting in a semi-
conductor.

HEAVIER GROUP 15 ELEMENTS

As one moves down group 15, p orbitals become more
di!use and their interactions are weaker. In contrast, the
s orbitals become compact and their energies decrease, due
to the relativistic e!ect (38, 39). As a result, s}p mixing
decreases drastically on going down a group in the periodic
table. The extended HuK ckel parameters are nonrelativistic,
and our calculational method does not cope with spin}orbit
coupling, another manifestation of the relativistic e!ect.

The LAPW band structure calculation for simple cubic
As by Mattheiss et al. shows that the s band lies rather low
and is less dispersive (22). At R the energy of the s band is
lower than those of the p bands. However, it is still higher
than the lowest energy of the p bands (at X); that is, the s and
p bands still overlap. There is no strong band repulsion,
because there is no band crossing between the s and p bands.
Strikingly, the overall features of the p bands are quite
similar to the HuK ckel calculations shown in Fig. 5. One
important di!erence in Mattheiss et al.'s results is a relative-
ly small band splitting occurring along !PM and !PR.
This band-splitting feature is similar to what is found in the
extended HuK ckel calculation with only p orbitals (shown in
Fig. 7). Unfortunately, the authors did not calculate Fermi
surfaces. From the band structure, however, we expect that
the Fermi surfaces are in shape between Figs. 5 and 7. In



FIG. 8. The Fermi surfaces from the band structure of Fig. 7 in (a) cross-section views on the planes of k
z
"0 and 0.5c* and in (b) a perspective

stereoview.
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simple cubic As, therefore, we would expect better Fermi
surface nesting than what we found in Fig. 8, but still
imperfect.

Although in simple cubic As the s}p mixing is not as
strong as in simple cubic P, it should be still considered as
an important contributor to the distortion. Indirect evid-
ence for this can be found in the behavior of GeTe under
pressure (41). In a St. John}Bloch plot, GeTe lies very close
to Sb and As, implying that its structural behavior will be
similar to Sb and As (19, 20). At ambient pressure, GeTe has
a rhombohedral structure like As (as well as Sb and Bi), and
is a narrow-gap semiconductor. Upon increasing the pres-
sure, GeTe transforms to a NaCl-type structure (i.e., an
ordered simple cubic structure) around 3GPa. The resisitiv-
ity decreases monotonically to about 6GPa and does not
exhibit any anomaly during the phase transformation. Band
calculations also support the semiconducting nature of
GeTe in its cubic form (41b). The implication is that the
transformation has nothing to do with a Peierls instability,
but with the s}p mixing.

As mentioned earlier, s}p mixing and Peierls distortion
cause the same type of distorted local geometries in group
15 elements. In principle, s}p mixing can occur whether the
Fermi surfaces are nested or not. How much it actually
contributes to the distortion depends on the magnitude of
the s}p interactions. For Sb and Bi, the role of the s orbital



FIG. 9. Dispersion relations of the bands of the simple cubic P struc-
ture within the extended HuK ckel approximation. The dashed line refers to
a Fermi level for a s2p3 electron con"guration.

FIG. 10. The Fermi surfaces from the band structure of Fig. 9 in (a) cro
stereoview.
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in chemical bonding becomes reduced, and the distortion
due to the s}p mixing should be less severe. This explains
why the distortion decreases in the order of P'As'Sb'
Bi. We believe that the reverse order is predicted from
considerations of the Peierls instability. On going down the
periodic table, the Fermi surfaces are more likely to be
nested. The Peierls instability should lead to least distortion
in P. This is opposite to the experimental observation.
A detailed examination of this trend, from a di!erent per-
spective and in the context of normal and hypervalent
geometries of group 15 and 16 extended structures, is given
in a forthcoming study from our group by G. Papoian (40).

CONCLUDING REMARKS

The band structure and Fermi surfaces of simple cubic
P structure were calculated with the extended HuK ckel
ss-section views on the planes of k
z
"0 and 0.5c* and in (b) a perspective
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tight-binding method. The Fermi surfaces consist of a small
sphere centered at ! and a cross formed by three circular
pipes perpendicular to each other. The s band is quite broad
and overlaps with the p bands. The s}p mixing is signi"cant
and strongly a!ects the band structure and the shapes of the
Fermi surfaces. The calculated Fermi surfaces are not nes-
ted. Within the simple HuK ckel approximation, the pn inter-
action severely deforms the ideal 1D Fermi surfaces. In
reality, additional interactions, such as long-range and s}p
interactions, destroy the Fermi nesting completely.

The unnested Fermi surfaces of simple cubic P structure
argue strongly that the Peierls instability is not responsible
for A17 and intermediate A7 structures of phosphorus as
well as its transformation to a simple cubic structure under
pressure. We suggest that the s}p mixing stabilizes the local
distorted geometry in black phosphorus, by forming a non-
bonding lone pair band. The s}p mixing should decrease
down the group due to the s-orbital contraction. This ex-
plains why the distortion is the largest in black phosphorus.
The strongest s}p mixing occurs in P, driving the largest
distortion, even though the Fermi surface nesting is absent
in its simple cubic form. For the heavier group 15 elements,
the Fermi surfaces are more likely to be nested, especially
due to the weaker p orbital interactions and the smaller
involvement of s orbitals in chemical bonding.
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